Analysis of microbial community composition and diversity in the rhizosphere of Salvia miltiorrhiza at different growth stages.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Microbiology Pub Date : 2024-06-04 DOI:10.1007/s10123-024-00542-6
Lina Li, Juying Huang, Yushan Liu, Qian Zhang, Qingdian Han, Yunguo Liu, Guangna Zhang, Xiao Wang, Wenfei Zhao, Lingxiao Liu
{"title":"Analysis of microbial community composition and diversity in the rhizosphere of Salvia miltiorrhiza at different growth stages.","authors":"Lina Li, Juying Huang, Yushan Liu, Qian Zhang, Qingdian Han, Yunguo Liu, Guangna Zhang, Xiao Wang, Wenfei Zhao, Lingxiao Liu","doi":"10.1007/s10123-024-00542-6","DOIUrl":null,"url":null,"abstract":"<p><p>Salvia miltiorrhiza is a kind of medicinal plant with various pharmacological activities. Few studies on the composition and diversity of rhizosphere microbial communities at different growth stages have been conducted on Salvia miltiorrhiz; in particular, salviorrhiza grows in soil that has been continuously planted for 3 years. The purpose of this study was to understand the changes of soil physicochemical properties of Salvia miltiorrhiza at different growth stages, and to study the composition and diversity of rhizosphere microbial community at different growth stages. Illumina NovaSeq sequencing technology was used to analyze the bacterial 16S rRNA gene and the fungal ITS region in the rhizosphere soil of Salvia miltiorrhiza at different growth stages. The results showed that the dominant bacterial phyla in the Salvia miltiorrhiza rhizosphere were Proteobacteria, Bacteroidetes, Acidobacteria, Firmicutes, Actinobacteria, and Chloroflexi. The dominant fungal phyla were Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota. During the growth of Salvia miltiorrhiza, the physical and chemical properties of soil changed. As the Salvia miltiorrhiza grew, the content of available phosphorus, available potassium, pH, nitrate nitrogen, and ammonium nitrogen significantly decreased. Ammonium nitrogen and nitrate nitrogen had a greater impact on the bacterial community structure in the rhizosphere than on the fungal community structure. The work was to reveal differences in the rhizosphere bacterial and fungal community structure during different growth stages of Salvia miltiorrhiza, further understand the changes of rhizosphere microbial ecological characteristics and soil physicochemical properties during the cultivation of Salvia miltiorrhiza.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00542-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salvia miltiorrhiza is a kind of medicinal plant with various pharmacological activities. Few studies on the composition and diversity of rhizosphere microbial communities at different growth stages have been conducted on Salvia miltiorrhiz; in particular, salviorrhiza grows in soil that has been continuously planted for 3 years. The purpose of this study was to understand the changes of soil physicochemical properties of Salvia miltiorrhiza at different growth stages, and to study the composition and diversity of rhizosphere microbial community at different growth stages. Illumina NovaSeq sequencing technology was used to analyze the bacterial 16S rRNA gene and the fungal ITS region in the rhizosphere soil of Salvia miltiorrhiza at different growth stages. The results showed that the dominant bacterial phyla in the Salvia miltiorrhiza rhizosphere were Proteobacteria, Bacteroidetes, Acidobacteria, Firmicutes, Actinobacteria, and Chloroflexi. The dominant fungal phyla were Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota. During the growth of Salvia miltiorrhiza, the physical and chemical properties of soil changed. As the Salvia miltiorrhiza grew, the content of available phosphorus, available potassium, pH, nitrate nitrogen, and ammonium nitrogen significantly decreased. Ammonium nitrogen and nitrate nitrogen had a greater impact on the bacterial community structure in the rhizosphere than on the fungal community structure. The work was to reveal differences in the rhizosphere bacterial and fungal community structure during different growth stages of Salvia miltiorrhiza, further understand the changes of rhizosphere microbial ecological characteristics and soil physicochemical properties during the cultivation of Salvia miltiorrhiza.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同生长阶段丹参根瘤菌群组成和多样性分析
丹参是一种具有多种药理活性的药用植物。有关丹参不同生长阶段根瘤微生物群落组成和多样性的研究很少,尤其是丹参生长在连续种植 3 年的土壤中。本研究旨在了解丹参在不同生长阶段土壤理化性质的变化,并研究不同生长阶段根瘤菌群落的组成和多样性。利用 Illumina NovaSeq 测序技术分析了丹参不同生长阶段根瘤土壤中细菌 16S rRNA 基因和真菌 ITS 区域。结果表明,丹参根圈土壤中的优势细菌门为变形菌门、类杆菌门、酸性菌门、固形菌门、放线菌门和绿僵菌门。主要真菌门为子囊菌门(Ascomycota)、毛霉菌门(Mortierellomycota)、担子菌门(Basidiomycota)和子囊菌门(Rozellomycota)。在丹参的生长过程中,土壤的物理和化学性质发生了变化。随着丹参的生长,可用磷、可用钾、pH 值、硝态氮和铵态氮的含量明显下降。与真菌群落结构相比,铵态氮和硝态氮对根瘤菌群落结构的影响更大。该研究旨在揭示丹参不同生长阶段根圈细菌和真菌群落结构的差异,进一步了解丹参栽培过程中根圈微生物生态特征和土壤理化性质的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
期刊最新文献
Rapid on-site detection of viable Vibrio parahaemolyticus in seafood using cis-diamminedichloroplatinum and colorimetric loop-mediated isothermal amplification (CDDP-LAMP). Scrutinizing harsh habitats endophytic fungi and their prospective effect on water-stressed maize seedlings. Effect of calf separation on gut microbiome and fecal metabolome of mother in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Unstable pathogen profile in spotted seal (Phoca largha) gut microbiota and limited turnover with habitat microbiome. Streptococcus dentisani inhibits the growth of Candida albicans and Candida glabrata: in vitro assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1