Assembly of a synthetic microbial community to ferment rice (Oryza sativa) bran for aquaculture feedstuff.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Microbiology Pub Date : 2025-02-28 DOI:10.1007/s10123-025-00651-w
Antonio de Oliveira Vieira, Juliano De Dea Lindner, Adriano Faria Palmieri, Caio Francisco Santana Farias, Scheila Anelise Pereira Dutra, Ivan De Marco, Marco Shizuo Owatari, Maurício Laterça Martins, José Luiz Pedreira Mouriño
{"title":"Assembly of a synthetic microbial community to ferment rice (Oryza sativa) bran for aquaculture feedstuff.","authors":"Antonio de Oliveira Vieira, Juliano De Dea Lindner, Adriano Faria Palmieri, Caio Francisco Santana Farias, Scheila Anelise Pereira Dutra, Ivan De Marco, Marco Shizuo Owatari, Maurício Laterça Martins, José Luiz Pedreira Mouriño","doi":"10.1007/s10123-025-00651-w","DOIUrl":null,"url":null,"abstract":"<p><p>Raw materials of plant origin, such as rice bran (Oryza sativa; RB), are promising alternatives to fishmeal in aquaculture feeds, offering a low-cost solution. However, due to antinutritional factors and reduced digestibility, direct use of RB is limited. Fermentation is an effective, cost-effective, and environmentally friendly technique that improves the nutritional quality of RB, enhancing nutrient availability and digestibility and reducing harmful compounds. Fermented RB improved growth, feed utilization, immune competence, and gut health, contributing to more sustainable aquaculture practices. The study aimed to evaluate the solid-state fermentation influence of a synthetic microbial community (SynCom) on RB (RBMC). The fermentation by the microbial consortium showed significant changes in RB physical-chemical composition and crude fiber and protein. Significant reductions were observed for ether extract, mineral matter, phosphate, phosphorus, and potassium compared with the naturally fermented RB (RBNF). Sodium, calcium, and iron contents increased by 43.03, 60.77, and 74.58%, respectively, compared to RBNF. A significant increase was observed in the fermented RBMC for essential and non-essential amino acids. Scanning electron microscopy revealed changes in the microstructure of the RB, in addition to the presence of microbial aggregates morphologically similar to the individuals used as inoculum. The RB fermentation using SynCom significantly improved the quality of the RB by-product feedstuff. The use of fermented RB in diet formulations for aquatic organisms is desirable because it enables the reuse of this industrial co-product, which is rich in nutrients and biological value.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00651-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Raw materials of plant origin, such as rice bran (Oryza sativa; RB), are promising alternatives to fishmeal in aquaculture feeds, offering a low-cost solution. However, due to antinutritional factors and reduced digestibility, direct use of RB is limited. Fermentation is an effective, cost-effective, and environmentally friendly technique that improves the nutritional quality of RB, enhancing nutrient availability and digestibility and reducing harmful compounds. Fermented RB improved growth, feed utilization, immune competence, and gut health, contributing to more sustainable aquaculture practices. The study aimed to evaluate the solid-state fermentation influence of a synthetic microbial community (SynCom) on RB (RBMC). The fermentation by the microbial consortium showed significant changes in RB physical-chemical composition and crude fiber and protein. Significant reductions were observed for ether extract, mineral matter, phosphate, phosphorus, and potassium compared with the naturally fermented RB (RBNF). Sodium, calcium, and iron contents increased by 43.03, 60.77, and 74.58%, respectively, compared to RBNF. A significant increase was observed in the fermented RBMC for essential and non-essential amino acids. Scanning electron microscopy revealed changes in the microstructure of the RB, in addition to the presence of microbial aggregates morphologically similar to the individuals used as inoculum. The RB fermentation using SynCom significantly improved the quality of the RB by-product feedstuff. The use of fermented RB in diet formulations for aquatic organisms is desirable because it enables the reuse of this industrial co-product, which is rich in nutrients and biological value.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
期刊最新文献
Methanotroph Methylotuvimicrobium alcaliphilum 20Z-3E as a fumarate producer: transcriptomic analysis and the role of malic enzyme. Nematicidal and plant growth-promoting rhizobacteria: a sustainable strategy for controlling Tylenchulus semipenetrans and enhancing citrus growth. Atmospheric CO2 flux and planktonic food web relationships in temperate marsh systems: insights from in situ water measurements. Unveiling the potential of bioslurry and biogenic ZnO nanoparticles formulation as significant bionanofertilizer by ameliorating rhizospheric microbiome of Vigna radiata. Assembly of a synthetic microbial community to ferment rice (Oryza sativa) bran for aquaculture feedstuff.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1