Speaker-based language identification for Ethio-Semitic languages using CRNN and hybrid features.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-06-04 DOI:10.1080/0954898X.2024.2359610
Malefia Demilie Melese, Amlakie Aschale Alemu, Ayodeji Olalekan Salau, Ibrahim Gashaw Kasa
{"title":"Speaker-based language identification for Ethio-Semitic languages using CRNN and hybrid features.","authors":"Malefia Demilie Melese, Amlakie Aschale Alemu, Ayodeji Olalekan Salau, Ibrahim Gashaw Kasa","doi":"10.1080/0954898X.2024.2359610","DOIUrl":null,"url":null,"abstract":"<p><p>Natural language is frequently employed for information exchange between humans and computers in modern digital environments. Natural Language Processing (NLP) is a basic requirement for technological advancement in the field of speech recognition. For additional NLP activities like speech-to-text translation, speech-to-speech translation, speaker recognition, and speech information retrieval, language identification (LID) is a prerequisite. In this paper, we developed a Language Identification (LID) model for Ethio-Semitic languages. We used a hybrid approach (a convolutional recurrent neural network (CRNN)), in addition to a mixed (Mel frequency cepstral coefficient (MFCC) and mel-spectrogram) approach, to build our LID model. The study focused on four Ethio-Semitic languages: Amharic, Ge'ez, Guragigna, and Tigrinya. By using data augmentation for the selected languages, we were able to expand our original dataset of 8 h of audio data to 24 h and 40 min. The proposed selected features, when evaluated, achieved an average performance accuracy of 98.1%, 98.6%, and 99.9% for testing, validation, and training, respectively. The results show that the CRNN model with (Mel-Spectrogram + MFCC) combination feature achieved the best results when compared to other existing models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-23"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2359610","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Natural language is frequently employed for information exchange between humans and computers in modern digital environments. Natural Language Processing (NLP) is a basic requirement for technological advancement in the field of speech recognition. For additional NLP activities like speech-to-text translation, speech-to-speech translation, speaker recognition, and speech information retrieval, language identification (LID) is a prerequisite. In this paper, we developed a Language Identification (LID) model for Ethio-Semitic languages. We used a hybrid approach (a convolutional recurrent neural network (CRNN)), in addition to a mixed (Mel frequency cepstral coefficient (MFCC) and mel-spectrogram) approach, to build our LID model. The study focused on four Ethio-Semitic languages: Amharic, Ge'ez, Guragigna, and Tigrinya. By using data augmentation for the selected languages, we were able to expand our original dataset of 8 h of audio data to 24 h and 40 min. The proposed selected features, when evaluated, achieved an average performance accuracy of 98.1%, 98.6%, and 99.9% for testing, validation, and training, respectively. The results show that the CRNN model with (Mel-Spectrogram + MFCC) combination feature achieved the best results when compared to other existing models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 CRNN 和混合特征,基于扬声器识别 Ethio-Semitic 语言。
在现代数字环境中,人与计算机之间经常使用自然语言进行信息交流。自然语言处理(NLP)是语音识别领域技术进步的基本要求。对于语音到文本翻译、语音到语音翻译、说话人识别和语音信息检索等其他 NLP 活动,语言识别(LID)是先决条件。在本文中,我们为 Ethio-Semitic 语言开发了一个语言识别 (LID) 模型。我们采用了一种混合方法(卷积递归神经网络(CRNN))以及一种混合方法(梅尔频率倒频谱系数(MFCC)和梅尔频谱图)来建立 LID 模型。研究重点是四种民族-闪米特语言:阿姆哈拉语、盖伊兹语、古拉格尼亚语和提格雷尼亚语。通过对所选语言进行数据扩充,我们将原来 8 小时的音频数据集扩充到了 24 小时 40 分钟。在对所选特征进行评估时,建议的测试、验证和训练平均准确率分别达到 98.1%、98.6% 和 99.9%。结果表明,与其他现有模型相比,具有(Mel-Spectrogram + MFCC)组合特征的 CRNN 模型取得了最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Optimizing tomato detection and counting in smart greenhouses: A lightweight YOLOv8 model incorporating high- and low-frequency feature transformer structures. HCAR-AM ground nut leaf net: Hybrid convolution-based adaptive ResNet with attention mechanism for detecting ground nut leaf diseases with adaptive segmentation. Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection. Can human brain connectivity explain verbal working memory? Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1