Zhangkai Wu , Zhichong Wang , Klaus Spohrer , Steffen Schock , Xiongkui He , Joachim Müller
{"title":"Non-contact leaf wetness measurement with laser-induced light reflection and RGB imaging","authors":"Zhangkai Wu , Zhichong Wang , Klaus Spohrer , Steffen Schock , Xiongkui He , Joachim Müller","doi":"10.1016/j.biosystemseng.2024.05.019","DOIUrl":null,"url":null,"abstract":"<div><p>Leaf wetness duration is a crucial factor in plant disease management. Current optical methods use standard RGB images to classify leaf wetness as a binary problem, i.e., wet or dry. Green leaves absorb red light, whereas water reflects it. Based on this difference, an experimental platform was built to semi-automatically measure droplet deposition on grape leaves while capturing red laser images using an RGB camera. The setup measured changes in leaf mass and area of scanned leaves to determine the water mass per leaf area as a measure of leaf wetness. A sprayer was used to apply water droplets to the leaves. As the amount of deposited water increased, the mean red channel intensity decreased, with more bright spots in the images. These bright spots were more distinguishable as droplets in the green channel. Segmented leaf area, mean red channel intensity, and the number of identified droplets were used as image features. A generalised additive model was employed to predict the leaf wetness value with extracted features. The R-squared value for the prediction of the validation dataset was 0.71. Image resolution and leaf orientation were identified as factors that influenced the model accuracy. The measurement method introduced in this study shows potential for accurately quantifying leaf wetness, and implies that in practice detecting leaf wetness can be integrated into a multi-classification problem, thereby broadening the potential applications of optical methods.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"244 ","pages":"Pages 42-52"},"PeriodicalIF":4.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1537511024001284/pdfft?md5=2cb190952bd9b0e118d77ffb4e583ebe&pid=1-s2.0-S1537511024001284-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001284","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf wetness duration is a crucial factor in plant disease management. Current optical methods use standard RGB images to classify leaf wetness as a binary problem, i.e., wet or dry. Green leaves absorb red light, whereas water reflects it. Based on this difference, an experimental platform was built to semi-automatically measure droplet deposition on grape leaves while capturing red laser images using an RGB camera. The setup measured changes in leaf mass and area of scanned leaves to determine the water mass per leaf area as a measure of leaf wetness. A sprayer was used to apply water droplets to the leaves. As the amount of deposited water increased, the mean red channel intensity decreased, with more bright spots in the images. These bright spots were more distinguishable as droplets in the green channel. Segmented leaf area, mean red channel intensity, and the number of identified droplets were used as image features. A generalised additive model was employed to predict the leaf wetness value with extracted features. The R-squared value for the prediction of the validation dataset was 0.71. Image resolution and leaf orientation were identified as factors that influenced the model accuracy. The measurement method introduced in this study shows potential for accurately quantifying leaf wetness, and implies that in practice detecting leaf wetness can be integrated into a multi-classification problem, thereby broadening the potential applications of optical methods.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.