Metal Penetration and Grain Boundary in MoS2 Memristors

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-06-04 DOI:10.1002/aelm.202400264
Han Yan, Pingping Zhuang, Bo Li, Tian Ye, Changjie Zhou, Yushan Chen, Tiejun Li, Weiwei Cai, Daquan Yu, Jing Liu, Weiyi Lin
{"title":"Metal Penetration and Grain Boundary in MoS2 Memristors","authors":"Han Yan, Pingping Zhuang, Bo Li, Tian Ye, Changjie Zhou, Yushan Chen, Tiejun Li, Weiwei Cai, Daquan Yu, Jing Liu, Weiyi Lin","doi":"10.1002/aelm.202400264","DOIUrl":null,"url":null,"abstract":"2D semiconductors have demonstrated outstanding switching performance in resistive random-access memory (RRAM). Despite the proposed resistive switching (RS) mechanism involving the penetration of electrode metal atoms, direct observation of metal penetration in these van-der-Waals stacked 2D semiconductors remains absent. This study utilizes 2D molybdenum disulfide (MoS<sub>2</sub>) as the switching material, employing gold and multilayer graphene as electrodes. Through analysis of the switching characteristics of these RRAM devices, the pivotal role of grain boundaries and metal atoms is identify in achieving RS. High-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy provide direct evidence of metal penetration into multilayer MoS<sub>2</sub>. This study offers valuable insights into the RS mechanism in memristors based on multilayer MoS<sub>2</sub>, providing guidance for designing and optimizing 2D material memristive devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400264","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D semiconductors have demonstrated outstanding switching performance in resistive random-access memory (RRAM). Despite the proposed resistive switching (RS) mechanism involving the penetration of electrode metal atoms, direct observation of metal penetration in these van-der-Waals stacked 2D semiconductors remains absent. This study utilizes 2D molybdenum disulfide (MoS2) as the switching material, employing gold and multilayer graphene as electrodes. Through analysis of the switching characteristics of these RRAM devices, the pivotal role of grain boundaries and metal atoms is identify in achieving RS. High-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy provide direct evidence of metal penetration into multilayer MoS2. This study offers valuable insights into the RS mechanism in memristors based on multilayer MoS2, providing guidance for designing and optimizing 2D material memristive devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MoS2 膜晶体管中的金属渗透和晶界
二维半导体在电阻式随机存取存储器(RRAM)中表现出卓越的开关性能。尽管提出的电阻式开关(RS)机制涉及电极金属原子的渗透,但在这些范-德-瓦尔斯堆叠的二维半导体中仍然缺乏对金属渗透的直接观察。本研究利用二维二硫化钼(MoS2)作为开关材料,并采用金和多层石墨烯作为电极。通过分析这些 RRAM 器件的开关特性,确定了晶界和金属原子在实现 RS 方面的关键作用。高分辨率透射电子显微镜和能量色散 X 射线光谱提供了金属渗入多层 MoS2 的直接证据。这项研究为了解基于多层 MoS2 的忆阻器中的 RS 机制提供了宝贵的见解,为设计和优化二维材料忆阻器提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Self-Selective Crossbar Synapse Array with n-ZnO/p-NiOx/n-ZnO Structure for Neuromorphic Computing 2D C‐Axis‐Aligned Crystalline In─S─O Transistors Processed from Aqueous Solution Volatile and Non‐Volatile Dual‐Function Electrically Controlled Ultraviolet Magneto‐Optical Effect in TmIG/Pt Purely Electric‐Driven Field‐Free Magnetization Switching in L10‐FePt Single Film for Reconfigurable Spin Logic Computing Effect of Substrate on Spin‐Wave Propagation Properties in Ferrimagnetic Thulium Iron Garnet Thin Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1