Megan Uttley, Grace Horne, Areti Tsigkinopoulou, Francesco Del Carratore, Aliah Hawari, Magdalena Kiezel-Tsugunova, Alexandra C. Kendall, Janette Jones, David Messenger, Ranjit Kaur Bhogal, Rainer Breitling and Anna Nicolaou
{"title":"An adaptable in silico ensemble model of the arachidonic acid cascade†","authors":"Megan Uttley, Grace Horne, Areti Tsigkinopoulou, Francesco Del Carratore, Aliah Hawari, Magdalena Kiezel-Tsugunova, Alexandra C. Kendall, Janette Jones, David Messenger, Ranjit Kaur Bhogal, Rainer Breitling and Anna Nicolaou","doi":"10.1039/D3MO00187C","DOIUrl":null,"url":null,"abstract":"<p >Eicosanoids are a family of bioactive lipids, including derivatives of the ubiquitous fatty acid arachidonic acid (AA). The intimate involvement of eicosanoids in inflammation motivates the development of predictive <em>in silico</em> models for a systems-level exploration of disease mechanisms, drug development and replacement of animal models. Using an ensemble modelling strategy, we developed a computational model of the AA cascade. This approach allows the visualisation of plausible and thermodynamically feasible predictions, overcoming the limitations of fixed-parameter modelling. A quality scoring method was developed to quantify the accuracy of ensemble predictions relative to experimental data, measuring the overall uncertainty of the process. Monte Carlo ensemble modelling was used to quantify the prediction confidence levels. Model applicability was demonstrated using mass spectrometry mediator lipidomics to measure eicosanoids produced by HaCaT epidermal keratinocytes and 46BR.1N dermal fibroblasts, treated with stimuli (calcium ionophore A23187), (ultraviolet radiation, adenosine triphosphate) and a cyclooxygenase inhibitor (indomethacin). Experimentation and predictions were in good qualitative agreement, demonstrating the ability of the model to be adapted to cell types exhibiting differences in AA release and enzyme concentration profiles. The quantitative agreement between experimental and predicted outputs could be improved by expanding network topology to include additional reactions. Overall, our approach generated an adaptable, tuneable ensemble model of the AA cascade that can be tailored to represent different cell types and demonstrated that the integration of <em>in silico</em> and <em>in vitro</em> methods can facilitate a greater understanding of complex biological networks such as the AA cascade.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mo/d3mo00187c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d3mo00187c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Eicosanoids are a family of bioactive lipids, including derivatives of the ubiquitous fatty acid arachidonic acid (AA). The intimate involvement of eicosanoids in inflammation motivates the development of predictive in silico models for a systems-level exploration of disease mechanisms, drug development and replacement of animal models. Using an ensemble modelling strategy, we developed a computational model of the AA cascade. This approach allows the visualisation of plausible and thermodynamically feasible predictions, overcoming the limitations of fixed-parameter modelling. A quality scoring method was developed to quantify the accuracy of ensemble predictions relative to experimental data, measuring the overall uncertainty of the process. Monte Carlo ensemble modelling was used to quantify the prediction confidence levels. Model applicability was demonstrated using mass spectrometry mediator lipidomics to measure eicosanoids produced by HaCaT epidermal keratinocytes and 46BR.1N dermal fibroblasts, treated with stimuli (calcium ionophore A23187), (ultraviolet radiation, adenosine triphosphate) and a cyclooxygenase inhibitor (indomethacin). Experimentation and predictions were in good qualitative agreement, demonstrating the ability of the model to be adapted to cell types exhibiting differences in AA release and enzyme concentration profiles. The quantitative agreement between experimental and predicted outputs could be improved by expanding network topology to include additional reactions. Overall, our approach generated an adaptable, tuneable ensemble model of the AA cascade that can be tailored to represent different cell types and demonstrated that the integration of in silico and in vitro methods can facilitate a greater understanding of complex biological networks such as the AA cascade.
二十酸是一系列生物活性脂质,包括无处不在的脂肪酸花生四烯酸(AA)的衍生物。二十酸类在炎症中的密切参与促使人们开发出预测性的硅学模型,用于系统级的疾病机制探索、药物开发和动物模型替代。利用集合建模策略,我们开发了 AA 级联的计算模型。这种方法克服了固定参数建模的局限性,使可信的、热力学上可行的预测可视化。我们开发了一种质量评分方法,用于量化相对于实验数据的集合预测的准确性,测量过程的整体不确定性。蒙特卡洛集合建模用于量化预测置信度。使用质谱介质脂质组学测量 HaCaT 表皮角质细胞和 46BR.1N 真皮成纤维细胞在刺激(钙离子诱导剂(A23187)、紫外线辐射、三磷酸腺苷)和环氧化酶抑制剂(吲哚美辛)作用下产生的二十烷酸,证明了模型的适用性。实验结果和预测结果在质量上非常吻合,这表明该模型能够适应在 AA 释放和酶浓度分布方面存在差异的细胞类型。通过扩大网络拓扑结构以包括更多的反应,实验结果和预测结果之间的定量一致性可以得到改善。总之,我们的方法生成了一个适应性强、可调整的 AA 级联集合模型,该模型可量身定制以代表不同的细胞类型,并证明了硅学和体外方法的整合有助于加深对 AA 级联等复杂生物网络的理解。