Xie Zhou, Fangjie Li, Min Liu, Dongye Yang, Qin Shen, Jun Zheng, Changhong Xiong, Yan Zhang
{"title":"Effect of Heat Treatment on Tribological Properties of SiCp/Al–Mg–Mn–Cu Aluminum Matrix Composites","authors":"Xie Zhou, Fangjie Li, Min Liu, Dongye Yang, Qin Shen, Jun Zheng, Changhong Xiong, Yan Zhang","doi":"10.1007/s12666-024-03366-0","DOIUrl":null,"url":null,"abstract":"<p>The tribological behaviors of SiCp/Al–Mg–Mn–Cu aluminum matrix composites under solid solution (labeled as SS sample) and aging treatment (labeled as SA sample) were systematically investigated. The microstructures, tribological properties and wear mechanisms of worn surfaces were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and wear testing machine, respectively. The microscopy study showed the uniform distribution of reinforcements in the SiCp/Al–Mg–Mn–Cu composites. And a large number of fine CuMgAl<sub>2</sub> phases were observed in the untreated sample but dissolved in the SS sample to some extent. It can be confirmed that the size and number of some new precipitates and CuMgAl<sub>2</sub> phases were in the suitable state for the SA sample resulting from its excellent integrated mechanical properties. A good combination of strength and plasticity in SA sample was corresponding well with its much lower coefficient of friction (COF) and well abrasion resistance, with a COF of 0.25. The wear mechanisms of the untreated and SS samples have found to be the combination of abrasive and adhesive indicated by the presence of some wear debris and delaminated flakes, whereas the wear mechanism is changed to adhesive dominantly with slight delamination in case of SA sample.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03366-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The tribological behaviors of SiCp/Al–Mg–Mn–Cu aluminum matrix composites under solid solution (labeled as SS sample) and aging treatment (labeled as SA sample) were systematically investigated. The microstructures, tribological properties and wear mechanisms of worn surfaces were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and wear testing machine, respectively. The microscopy study showed the uniform distribution of reinforcements in the SiCp/Al–Mg–Mn–Cu composites. And a large number of fine CuMgAl2 phases were observed in the untreated sample but dissolved in the SS sample to some extent. It can be confirmed that the size and number of some new precipitates and CuMgAl2 phases were in the suitable state for the SA sample resulting from its excellent integrated mechanical properties. A good combination of strength and plasticity in SA sample was corresponding well with its much lower coefficient of friction (COF) and well abrasion resistance, with a COF of 0.25. The wear mechanisms of the untreated and SS samples have found to be the combination of abrasive and adhesive indicated by the presence of some wear debris and delaminated flakes, whereas the wear mechanism is changed to adhesive dominantly with slight delamination in case of SA sample.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.