Laplacian Renormalization Group: An introduction to heterogeneous coarse-graining

Guido Caldarelli, Andrea Gabrielli, Tommaso Gili, Pablo Villegas
{"title":"Laplacian Renormalization Group: An introduction to heterogeneous coarse-graining","authors":"Guido Caldarelli, Andrea Gabrielli, Tommaso Gili, Pablo Villegas","doi":"arxiv-2406.02337","DOIUrl":null,"url":null,"abstract":"The renormalization group (RG) constitutes a fundamental framework in modern\ntheoretical physics. It allows the study of many systems showing states with\nlarge-scale correlations and their classification in a relatively small set of\nuniversality classes. RG is the most powerful tool for investigating\norganizational scales within dynamic systems. However, the application of RG\ntechniques to complex networks has presented significant challenges, primarily\ndue to the intricate interplay of correlations on multiple scales. Existing\napproaches have relied on hypotheses involving hidden geometries and based on\nembedding complex networks into hidden metric spaces. Here, we present a\npractical overview of the recently introduced Laplacian Renormalization Group\nfor heterogeneous networks. First, we present a brief overview that justifies\nthe use of the Laplacian as a natural extension for well-known field theories\nto analyze spatial disorder. We then draw an analogy to traditional real-space\nrenormalization group procedures, explaining how the LRG generalizes the\nconcept of \"Kadanoff supernodes\" as block nodes that span multiple scales.\nThese supernodes help mitigate the effects of cross-scale correlations due to\nsmall-world properties. Additionally, we rigorously define the LRG procedure in\nmomentum space in the spirit of Wilson RG. Finally, we show different analyses\nfor the evolution of network properties along the LRG flow following structural\nchanges when the network is properly reduced.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The renormalization group (RG) constitutes a fundamental framework in modern theoretical physics. It allows the study of many systems showing states with large-scale correlations and their classification in a relatively small set of universality classes. RG is the most powerful tool for investigating organizational scales within dynamic systems. However, the application of RG techniques to complex networks has presented significant challenges, primarily due to the intricate interplay of correlations on multiple scales. Existing approaches have relied on hypotheses involving hidden geometries and based on embedding complex networks into hidden metric spaces. Here, we present a practical overview of the recently introduced Laplacian Renormalization Group for heterogeneous networks. First, we present a brief overview that justifies the use of the Laplacian as a natural extension for well-known field theories to analyze spatial disorder. We then draw an analogy to traditional real-space renormalization group procedures, explaining how the LRG generalizes the concept of "Kadanoff supernodes" as block nodes that span multiple scales. These supernodes help mitigate the effects of cross-scale correlations due to small-world properties. Additionally, we rigorously define the LRG procedure in momentum space in the spirit of Wilson RG. Finally, we show different analyses for the evolution of network properties along the LRG flow following structural changes when the network is properly reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拉普拉斯归一化组:异质粗粒化简介
重正化群(RG)是现代理论物理的基本框架。它允许研究许多显示具有大尺度相关性状态的系统,并将它们归入相对较小的普遍性类别中。RG 是研究动态系统内组织尺度的最强大工具。然而,RG 技术在复杂网络中的应用面临着巨大挑战,这主要是由于多尺度相关性之间错综复杂的相互作用。现有方法依赖于涉及隐蔽几何的假设,并基于将复杂网络嵌入隐蔽度量空间。在此,我们将对最近引入的异构网络拉普拉斯归一化组进行实用性概述。首先,我们简要概述了拉普拉斯重正化群作为众所周知的场论的自然扩展来分析空间无序性的理由。然后,我们类比了传统的实空间正则化群程序,解释了拉普拉斯正则化群如何将 "卡达诺夫超节点 "的概念推广为跨越多个尺度的块节点。此外,我们本着威尔逊 RG 的精神,严格定义了动量空间中的 LRG 过程。最后,我们展示了不同的分析方法,以说明当网络被适当缩小时,结构发生变化后网络属性沿 LRG 流的演变情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1