Superior Performance of Hollow Plasmonic Cubic Structures for Solar Energy Harvesting, Conversion, and Storage Systems

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL Plasmonics Pub Date : 2024-06-03 DOI:10.1007/s11468-024-02374-6
Olavo Cardozo, Muhammad Habib, Weixiong Jiang, Renato E. de Araujo, Sajid Farooq
{"title":"Superior Performance of Hollow Plasmonic Cubic Structures for Solar Energy Harvesting, Conversion, and Storage Systems","authors":"Olavo Cardozo, Muhammad Habib, Weixiong Jiang, Renato E. de Araujo, Sajid Farooq","doi":"10.1007/s11468-024-02374-6","DOIUrl":null,"url":null,"abstract":"<p>The remarkable optical properties of metallic nanoparticles play a pivotal role in enhancing light absorption for solar energy applications by efficiently converting solar flux into heat. In the pursuit of achieving a broad spectrum absorption from visible to near-infrared (NIR) wavelengths, colloidal nanoparticles, specifically gold/silver hollow nanocubes (HNC) with varied aspect ratios, are utilized. Employing a comprehensive full-wave field analysis, we assess the linear optical characteristics to determine the solar-weighted absorption coefficient of these plasmonic nanofluids across different concentrations and aspect ratios. Our findings reveal that the solar-weighted absorption efficiency of gold hollow plasmonic nanocubes significantly improves (up to 93 %) even at extremely low volume fractions (<i>p</i> = 3.10<span>\\(^{-6}\\)</span>) compared to silver hollow plasmonic nanocubes (83 %). The outstanding performance of Au hollow plasmonic nanocubes, boasting over 99 % enhancement in solar-weighted absorption efficiency at minimal nanofluid thickness (1.0 cm), underscores their Ag counterparts, marking a significant leap forward in ideal solar absorber conditions.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02374-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The remarkable optical properties of metallic nanoparticles play a pivotal role in enhancing light absorption for solar energy applications by efficiently converting solar flux into heat. In the pursuit of achieving a broad spectrum absorption from visible to near-infrared (NIR) wavelengths, colloidal nanoparticles, specifically gold/silver hollow nanocubes (HNC) with varied aspect ratios, are utilized. Employing a comprehensive full-wave field analysis, we assess the linear optical characteristics to determine the solar-weighted absorption coefficient of these plasmonic nanofluids across different concentrations and aspect ratios. Our findings reveal that the solar-weighted absorption efficiency of gold hollow plasmonic nanocubes significantly improves (up to 93 %) even at extremely low volume fractions (p = 3.10\(^{-6}\)) compared to silver hollow plasmonic nanocubes (83 %). The outstanding performance of Au hollow plasmonic nanocubes, boasting over 99 % enhancement in solar-weighted absorption efficiency at minimal nanofluid thickness (1.0 cm), underscores their Ag counterparts, marking a significant leap forward in ideal solar absorber conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于太阳能收集、转换和存储系统的中空等离子体立方体结构的卓越性能
金属纳米粒子具有非凡的光学特性,能有效地将太阳光通量转化为热量,在增强太阳能应用的光吸收方面发挥着举足轻重的作用。为了实现从可见光到近红外(NIR)波长的宽光谱吸收,我们采用了胶体纳米粒子,特别是具有不同长宽比的金/银空心纳米立方体(HNC)。通过全面的全波场分析,我们评估了这些等离子纳米流体的线性光学特性,以确定不同浓度和长宽比的太阳加权吸收系数。我们的研究结果表明,与银空心质子纳米立方体(83%)相比,金空心质子纳米立方体的太阳加权吸收效率即使在极低的体积分数(p = 3.10\(^{-6}\) )下也能显著提高(高达 93%)。金空心质子纳米立方体的卓越性能使其在最小纳米流体厚度(1.0 厘米)下的太阳加权吸收效率提高了 99% 以上,这突出了其银纳米立方体的性能,标志着在理想太阳能吸收器条件下的重大飞跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
期刊最新文献
Design and Development of Surface Plasmon Resonance Biosensor for Early Detection of Cervical Cancer Utilizing Nucleus and Cytoplasm Design and Analysis of a Plasmonic Metasurface-Based Graphene Sensor for Highly Sensitive and Label-Free Detection of COVID-19 Biomarkers High-Performance Plasmonic Biosensor for Blood Cancer Detection: Achieving Ultrahigh Figure-of-Merit Core–Shell Plasmonic Nanostructures for Hyperthermia of Cancer and Tumor Cells Design and Analysis of a Terahertz Metasurface-Based Refractive Index Sensor for Hemoglobin Detection With Behaviour Prediction Using Polynomial Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1