Shinjune Kim, Youngjae Oh, Johan Lim, DoHwan Park, Erin M. Green, Mark L. Ramos, Jaesik Jeong
{"title":"Double truncation method for controlling local false discovery rate in case of spiky null","authors":"Shinjune Kim, Youngjae Oh, Johan Lim, DoHwan Park, Erin M. Green, Mark L. Ramos, Jaesik Jeong","doi":"10.1007/s00180-024-01510-4","DOIUrl":null,"url":null,"abstract":"<p>Many multiple test procedures, which control the false discovery rate, have been developed to identify some cases (e.g. genes) showing statistically significant difference between two different groups. However, a common issue encountered in some practical data sets is the presence of highly spiky null distributions. Existing methods struggle to control type I error in such cases due to the “inflated false positives,\" but this problem has not been addressed in previous literature. Our team recently encountered this issue while analyzing SET4 gene deletion data and proposed modeling the null distribution using a scale mixture normal distribution. However, the use of this approach is limited due to strong assumptions on the spiky peak. In this paper, we present a novel multiple test procedure that can be applied to any type of spiky peak data, including situations with no spiky peak or with one or two spiky peaks. Our approach involves truncating the central statistics around 0, which primarily contribute to the null spike, as well as the two tails that may be contaminated by alternative distributions. We refer to this method as the “double truncation method.\" After applying double truncation, we estimate the null density using the doubly truncated maximum likelihood estimator. We demonstrate numerically that our proposed method effectively controls the false discovery rate at the desired level using simulated data. Furthermore, we apply our method to two real data sets, namely the SET protein data and peony data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01510-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many multiple test procedures, which control the false discovery rate, have been developed to identify some cases (e.g. genes) showing statistically significant difference between two different groups. However, a common issue encountered in some practical data sets is the presence of highly spiky null distributions. Existing methods struggle to control type I error in such cases due to the “inflated false positives," but this problem has not been addressed in previous literature. Our team recently encountered this issue while analyzing SET4 gene deletion data and proposed modeling the null distribution using a scale mixture normal distribution. However, the use of this approach is limited due to strong assumptions on the spiky peak. In this paper, we present a novel multiple test procedure that can be applied to any type of spiky peak data, including situations with no spiky peak or with one or two spiky peaks. Our approach involves truncating the central statistics around 0, which primarily contribute to the null spike, as well as the two tails that may be contaminated by alternative distributions. We refer to this method as the “double truncation method." After applying double truncation, we estimate the null density using the doubly truncated maximum likelihood estimator. We demonstrate numerically that our proposed method effectively controls the false discovery rate at the desired level using simulated data. Furthermore, we apply our method to two real data sets, namely the SET protein data and peony data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.