{"title":"Randomized Tensor Wheel Decomposition","authors":"Mengyu Wang, Yajie Yu, Hanyu Li","doi":"10.1137/23m1583934","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1714-A1746, June 2024. <br/> Abstract. Tensor wheel (TW) decomposition is an elegant compromise of the popular tensor ring decomposition and fully connected tensor network decomposition, and it has many applications. In this work, we investigate the computation of this decomposition. Three randomized algorithms based on random sampling or random projection are proposed. Specifically, by defining a new tensor product called the subwheel product, the structures of the coefficient matrices of the alternating least squares subproblems from the minimization problem of TW decomposition are first figured out. Then, using the structures and the properties of the subwheel product, a random sampling algorithm based on leverage sampling and two random projection algorithms respectively based on Kronecker subsampled randomized Fourier transform and TensorSketch are derived. These algorithms can implement the sampling and projection on TW factors and hence can avoid forming the full coefficient matrices of subproblems. We present the complexity analysis and numerical performance on synthetic data, real data, and image reconstruction for our algorithms. Experimental results show that, compared with the deterministic algorithm in the literature, they need much less computing time while achieving similar accuracy and reconstruction effect. We also apply the proposed algorithms to tensor completion and find that the sampling-based algorithm always has excellent performance and the projection-based algorithms behave well when the sampling rate is higher than 50%.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"25 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1583934","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1714-A1746, June 2024. Abstract. Tensor wheel (TW) decomposition is an elegant compromise of the popular tensor ring decomposition and fully connected tensor network decomposition, and it has many applications. In this work, we investigate the computation of this decomposition. Three randomized algorithms based on random sampling or random projection are proposed. Specifically, by defining a new tensor product called the subwheel product, the structures of the coefficient matrices of the alternating least squares subproblems from the minimization problem of TW decomposition are first figured out. Then, using the structures and the properties of the subwheel product, a random sampling algorithm based on leverage sampling and two random projection algorithms respectively based on Kronecker subsampled randomized Fourier transform and TensorSketch are derived. These algorithms can implement the sampling and projection on TW factors and hence can avoid forming the full coefficient matrices of subproblems. We present the complexity analysis and numerical performance on synthetic data, real data, and image reconstruction for our algorithms. Experimental results show that, compared with the deterministic algorithm in the literature, they need much less computing time while achieving similar accuracy and reconstruction effect. We also apply the proposed algorithms to tensor completion and find that the sampling-based algorithm always has excellent performance and the projection-based algorithms behave well when the sampling rate is higher than 50%.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.