{"title":"Multiview data fusion technique for missing value imputation in multisensory air pollution dataset","authors":"Asif Iqbal Middya, Sarbani Roy","doi":"10.1007/s12652-024-04816-9","DOIUrl":null,"url":null,"abstract":"<p>The missing readings in various sensors of air pollution monitoring stations is a common issue. Those missing sensor readings may greatly influence the performance of monitoring and analysis of air pollution data. To address this problem, in this paper, a multi-view based missing value (MV) imputation method called MVDI (<b>M</b>ulti-<b>V</b>iew <b>D</b>ata <b>I</b>mputation) is proposed for air pollution related time series data. MVDI combines four models namely LSTM (Long-Short Term Memory), IDS (Inverse Distance Squared), SVR (Support Vector Regressor), and KNN (K-Nearest Neighbors) to estimate MVs. These four models are mainly employed to capture the variations in data from different views of the dataset. Here, different views represent different portions (subsets) of the actual dataset. The estimates of MVs from all the views are combined using a kernel function to get an overall result. The proposed model MVDI is evaluated on real-world air pollution dataset in terms of RMSE, MAE, MAPE, and R<sup>2</sup>. The experimental results show that MVDI dominates over the baseline methods namely AR (AutoRegressive), ARIMA (AutoRegressive Integrated Moving Average), RFR (Random Forest Regressor), ANN (Artificial Neural Network), LI (Linear Interpolation), NN (Nearest Neighbors), MI (Mean Imputation), CNN (Convolutional Neural Network), ConvLSTM (Convolutional LSTM).</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04816-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The missing readings in various sensors of air pollution monitoring stations is a common issue. Those missing sensor readings may greatly influence the performance of monitoring and analysis of air pollution data. To address this problem, in this paper, a multi-view based missing value (MV) imputation method called MVDI (Multi-View Data Imputation) is proposed for air pollution related time series data. MVDI combines four models namely LSTM (Long-Short Term Memory), IDS (Inverse Distance Squared), SVR (Support Vector Regressor), and KNN (K-Nearest Neighbors) to estimate MVs. These four models are mainly employed to capture the variations in data from different views of the dataset. Here, different views represent different portions (subsets) of the actual dataset. The estimates of MVs from all the views are combined using a kernel function to get an overall result. The proposed model MVDI is evaluated on real-world air pollution dataset in terms of RMSE, MAE, MAPE, and R2. The experimental results show that MVDI dominates over the baseline methods namely AR (AutoRegressive), ARIMA (AutoRegressive Integrated Moving Average), RFR (Random Forest Regressor), ANN (Artificial Neural Network), LI (Linear Interpolation), NN (Nearest Neighbors), MI (Mean Imputation), CNN (Convolutional Neural Network), ConvLSTM (Convolutional LSTM).
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators