Genetic variability of aquaporin expression in maize: From eQTLs to a MITE insertion regulating PIP2;5 expression.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-09-02 DOI:10.1093/plphys/kiae326
Laurie C Maistriaux, Maxime J Laurent, Linda Jeanguenin, Santiago Alvarez Prado, Joseph Nader, Claude Welcker, Alain Charcosset, François Tardieu, Stéphane D Nicolas, François Chaumont
{"title":"Genetic variability of aquaporin expression in maize: From eQTLs to a MITE insertion regulating PIP2;5 expression.","authors":"Laurie C Maistriaux, Maxime J Laurent, Linda Jeanguenin, Santiago Alvarez Prado, Joseph Nader, Claude Welcker, Alain Charcosset, François Tardieu, Stéphane D Nicolas, François Chaumont","doi":"10.1093/plphys/kiae326","DOIUrl":null,"url":null,"abstract":"<p><p>Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages, and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of 4 plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through expression quantitative trait locus (eQTL) mapping across a 252-hybrid diversity panel. Significant genetic variability in PIP transcript abundance was observed to different extents depending on the isoforms. The genome-wide association study mapped numerous eQTLs, both local and distant, thus emphasizing the existing natural diversity of PIP gene expression across the studied panel and the potential to reveal regulatory actors and mechanisms. One eQTL associated with PIP2;5 expression variation was characterized. Genomic sequence comparison and in vivo reporter assay attributed, at least partly, the local eQTL to a transposon-containing polymorphism in the PIP2;5 promoter. This work paves the way to the molecular understanding of PIP gene regulation and its possible integration into larger networks regulating physiological and stress adaptation processes.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae326","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages, and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of 4 plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through expression quantitative trait locus (eQTL) mapping across a 252-hybrid diversity panel. Significant genetic variability in PIP transcript abundance was observed to different extents depending on the isoforms. The genome-wide association study mapped numerous eQTLs, both local and distant, thus emphasizing the existing natural diversity of PIP gene expression across the studied panel and the potential to reveal regulatory actors and mechanisms. One eQTL associated with PIP2;5 expression variation was characterized. Genomic sequence comparison and in vivo reporter assay attributed, at least partly, the local eQTL to a transposon-containing polymorphism in the PIP2;5 promoter. This work paves the way to the molecular understanding of PIP gene regulation and its possible integration into larger networks regulating physiological and stress adaptation processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玉米中水汽素表达的遗传变异:从 eQTLs 到调节 PIP2; 5 表达的 MITE 插入。
植物水汽素参与细胞平衡、组织水力学、蒸腾作用和养分供应等许多生理过程,是对环境线索做出反应的关键角色。虽然水汽素基因在不同器官、不同发育阶段和不同胁迫条件下的表达模式各不相同,但其潜在的调控机制仍然难以捉摸。因此,这项研究旨在通过在252个杂交多样性面板上绘制eQTL(表达定量性状位点)图谱,揭示玉米(Zea mays)叶片中四个质膜固有蛋白(PIP)基因的表达变异性及其遗传原因。根据同工酶的不同,PIP 转录本丰度的遗传变异程度也不同。全基因组关联研究绘制了许多局部和远处的 eQTLs,从而强调了整个研究小组中 PIP 基因表达的自然多样性,以及揭示调控参与者和机制的潜力。其中一个 eQTL 与 PIP2; 5 表达变异有关。通过基因组序列比较和体内报告基因检测,发现该局部 eQTL 至少部分归因于 PIP2; 5 启动子中的一个含转座子的多态性。这项工作为从分子角度理解 PIP 基因调控及其可能融入更大的生理和应激适应过程调控网络铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus. AlGrow: a graphical interface for easy, fast and accurate area and growth analysis of heterogeneously colored targets. Epigenetic control of T-DNA during transgenesis and pathogenesis. Metabolic Flux Analysis to Increase Oil in Seeds. Mutation of GLR2 confers enhanced glufosinate resistance and salt tolerance in rice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1