{"title":"Systematic simulations and analysis of transition states using committor functions","authors":"","doi":"10.1038/s43588-024-00652-1","DOIUrl":null,"url":null,"abstract":"Data about the transition states of rare transitions between long-lived states are needed to simulate physical and chemical processes; however, existing computational approaches often gather little information about these states. A machine-learning technique resolves this challenge by exploiting the century-old theory of committor functions.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00652-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Data about the transition states of rare transitions between long-lived states are needed to simulate physical and chemical processes; however, existing computational approaches often gather little information about these states. A machine-learning technique resolves this challenge by exploiting the century-old theory of committor functions.