Evolution and Correlation of Acoustic Emission and Resistance Parameters During Coal Fracture Propagation

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2024-06-05 DOI:10.1007/s11053-024-10362-0
Song Mingyang, Li Quangui, Hu Qianting, Zhang Yuebing, Xu Yangcheng, Hu Liangping, Zheng Xuewen, Zhao Zhengduo, Liu Suyu, Wang Mingjie
{"title":"Evolution and Correlation of Acoustic Emission and Resistance Parameters During Coal Fracture Propagation","authors":"Song Mingyang, Li Quangui, Hu Qianting, Zhang Yuebing, Xu Yangcheng, Hu Liangping, Zheng Xuewen, Zhao Zhengduo, Liu Suyu, Wang Mingjie","doi":"10.1007/s11053-024-10362-0","DOIUrl":null,"url":null,"abstract":"<p>Combining multiple monitoring methods can improve the accuracy of coal damage and fracture behavior detection. In this study, nine coal samples, each with similar P-wave velocities and masses, were subjected to joint monitoring experiments involving multiple physical parameters. The acoustic emission (AE) and resistance information of coal samples were assessed from the initiation of loading to eventual failure under diverse uniaxial loading rates. The characteristic electrical and acoustic parameters were analyzed in combination with coal damage conditions. The results show that, throughout the loading process, resistivity declined gradually with escalation of coal strain, followed by an abrupt nonlinear increase. Deformation before failure reduced coal resistivity by up to 11.39%. As the coal crack area expanded, the resistivity post-failure reached threefold the initial value. The AE ring count peak value corresponded to crack growth, and the AE energy had a power law distribution feature. The frequency band effect of the AE peak frequency was significant, and shear cracks accounted for more than 80%. Resistance and AE ring count exhibited simultaneous responses to coal failure, and the characteristic parameters of acoustic-electrical behavior demonstrated consistent patterns for cracks induced by various loading rates. The time sequence characteristics of the RSD index, which quantified the degree of resistivity fluctuation, corresponded almost exactly to the development process of coal damage described by AE, and the peak value of this index corresponded to the AE event in the time scale. The overall fluctuation degrees in resistivity of coal samples with varying damage levels showed positive correlation with the AE ring count. An acoustic-electric method for characterizing coal damage is summarized, and corresponding resistivity characteristic parameters are proposed. These parameters have a significant response law to coal damage, which is helpful in supplementing a new index for early warning of geological disasters.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"313 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10362-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Combining multiple monitoring methods can improve the accuracy of coal damage and fracture behavior detection. In this study, nine coal samples, each with similar P-wave velocities and masses, were subjected to joint monitoring experiments involving multiple physical parameters. The acoustic emission (AE) and resistance information of coal samples were assessed from the initiation of loading to eventual failure under diverse uniaxial loading rates. The characteristic electrical and acoustic parameters were analyzed in combination with coal damage conditions. The results show that, throughout the loading process, resistivity declined gradually with escalation of coal strain, followed by an abrupt nonlinear increase. Deformation before failure reduced coal resistivity by up to 11.39%. As the coal crack area expanded, the resistivity post-failure reached threefold the initial value. The AE ring count peak value corresponded to crack growth, and the AE energy had a power law distribution feature. The frequency band effect of the AE peak frequency was significant, and shear cracks accounted for more than 80%. Resistance and AE ring count exhibited simultaneous responses to coal failure, and the characteristic parameters of acoustic-electrical behavior demonstrated consistent patterns for cracks induced by various loading rates. The time sequence characteristics of the RSD index, which quantified the degree of resistivity fluctuation, corresponded almost exactly to the development process of coal damage described by AE, and the peak value of this index corresponded to the AE event in the time scale. The overall fluctuation degrees in resistivity of coal samples with varying damage levels showed positive correlation with the AE ring count. An acoustic-electric method for characterizing coal damage is summarized, and corresponding resistivity characteristic parameters are proposed. These parameters have a significant response law to coal damage, which is helpful in supplementing a new index for early warning of geological disasters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
煤炭断裂扩展过程中声波发射和电阻参数的演变及相关性
结合多种监测方法可以提高煤炭损伤和断裂行为检测的准确性。在这项研究中,九个煤样(每个煤样都具有相似的 P 波速度和质量)接受了涉及多个物理参数的联合监测实验。在不同的单轴加载速率下,评估了煤样从加载开始到最终破坏的声发射(AE)和电阻信息。结合煤炭的损坏情况分析了电学和声学特征参数。结果表明,在整个加载过程中,电阻率随着煤炭应变的增加而逐渐下降,随后出现突然的非线性增加。破坏前的变形使煤的电阻率降低了 11.39%。随着煤裂缝面积的扩大,失效后的电阻率达到了初始值的三倍。AE 环数峰值与裂纹增长相对应,AE 能量具有幂律分布特征。AE 峰值频率的频带效应显著,剪切裂纹占 80% 以上。电阻和 AE 环数对煤炭失效的响应是同步的,声电行为的特征参数对不同加载速率诱发的裂纹表现出一致的模式。量化电阻率波动程度的 RSD 指数的时序特征与 AE 描述的煤破坏发展过程几乎完全一致,该指数的峰值在时间尺度上与 AE 事件相对应。不同损伤程度煤样的电阻率总体波动程度与声发射环数呈正相关。总结了一种表征煤炭损伤的声电方法,并提出了相应的电阻率特征参数。这些参数对煤炭损伤具有显著的响应规律,有助于补充地质灾害预警的新指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Petrophysical Characteristics of the Paleocene Zelten Formation in the Gialo Oil Field, Sirte Basin, Libya Research on Coal Reservoir Pore Structures: Progress, Current Status, and Advancing Lateritic Ni–Co Prospectivity Modeling in Eastern Australia Using an Enhanced Generative Adversarial Network and Positive-Unlabeled Bagging Risk-Based Optimization of Post-Blast Dig-Limits Incorporating Blast Movement and Grade Uncertainties with Multiple Destinations in Open-Pit Mines Correlation Between and Mechanisms of Gas Desorption and Infrasound Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1