Song Mingyang, Li Quangui, Hu Qianting, Zhang Yuebing, Xu Yangcheng, Hu Liangping, Zheng Xuewen, Zhao Zhengduo, Liu Suyu, Wang Mingjie
{"title":"Evolution and Correlation of Acoustic Emission and Resistance Parameters During Coal Fracture Propagation","authors":"Song Mingyang, Li Quangui, Hu Qianting, Zhang Yuebing, Xu Yangcheng, Hu Liangping, Zheng Xuewen, Zhao Zhengduo, Liu Suyu, Wang Mingjie","doi":"10.1007/s11053-024-10362-0","DOIUrl":null,"url":null,"abstract":"<p>Combining multiple monitoring methods can improve the accuracy of coal damage and fracture behavior detection. In this study, nine coal samples, each with similar P-wave velocities and masses, were subjected to joint monitoring experiments involving multiple physical parameters. The acoustic emission (AE) and resistance information of coal samples were assessed from the initiation of loading to eventual failure under diverse uniaxial loading rates. The characteristic electrical and acoustic parameters were analyzed in combination with coal damage conditions. The results show that, throughout the loading process, resistivity declined gradually with escalation of coal strain, followed by an abrupt nonlinear increase. Deformation before failure reduced coal resistivity by up to 11.39%. As the coal crack area expanded, the resistivity post-failure reached threefold the initial value. The AE ring count peak value corresponded to crack growth, and the AE energy had a power law distribution feature. The frequency band effect of the AE peak frequency was significant, and shear cracks accounted for more than 80%. Resistance and AE ring count exhibited simultaneous responses to coal failure, and the characteristic parameters of acoustic-electrical behavior demonstrated consistent patterns for cracks induced by various loading rates. The time sequence characteristics of the RSD index, which quantified the degree of resistivity fluctuation, corresponded almost exactly to the development process of coal damage described by AE, and the peak value of this index corresponded to the AE event in the time scale. The overall fluctuation degrees in resistivity of coal samples with varying damage levels showed positive correlation with the AE ring count. An acoustic-electric method for characterizing coal damage is summarized, and corresponding resistivity characteristic parameters are proposed. These parameters have a significant response law to coal damage, which is helpful in supplementing a new index for early warning of geological disasters.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"313 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10362-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Combining multiple monitoring methods can improve the accuracy of coal damage and fracture behavior detection. In this study, nine coal samples, each with similar P-wave velocities and masses, were subjected to joint monitoring experiments involving multiple physical parameters. The acoustic emission (AE) and resistance information of coal samples were assessed from the initiation of loading to eventual failure under diverse uniaxial loading rates. The characteristic electrical and acoustic parameters were analyzed in combination with coal damage conditions. The results show that, throughout the loading process, resistivity declined gradually with escalation of coal strain, followed by an abrupt nonlinear increase. Deformation before failure reduced coal resistivity by up to 11.39%. As the coal crack area expanded, the resistivity post-failure reached threefold the initial value. The AE ring count peak value corresponded to crack growth, and the AE energy had a power law distribution feature. The frequency band effect of the AE peak frequency was significant, and shear cracks accounted for more than 80%. Resistance and AE ring count exhibited simultaneous responses to coal failure, and the characteristic parameters of acoustic-electrical behavior demonstrated consistent patterns for cracks induced by various loading rates. The time sequence characteristics of the RSD index, which quantified the degree of resistivity fluctuation, corresponded almost exactly to the development process of coal damage described by AE, and the peak value of this index corresponded to the AE event in the time scale. The overall fluctuation degrees in resistivity of coal samples with varying damage levels showed positive correlation with the AE ring count. An acoustic-electric method for characterizing coal damage is summarized, and corresponding resistivity characteristic parameters are proposed. These parameters have a significant response law to coal damage, which is helpful in supplementing a new index for early warning of geological disasters.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.