Simultaneous Localization and Mapping of a Mobile Robot With Stereo Camera Using ORB Features

Younès Raoui, Mohammed Amraoui
{"title":"Simultaneous Localization and Mapping of a Mobile Robot With Stereo Camera Using ORB Features","authors":"Younès Raoui, Mohammed Amraoui","doi":"10.14313/jamris/2-2024/14","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping (SLAM) is applied to robots for accurate navigation. The stereo cameras are suitable for visual SLAM as they can give the depth of the visual landmarks and more precise estimations of the robot’s pose. In this paper, we present a survey of SLAM methods, either Bayesian or bioinspired. Then we present a new method of SLAM, which we call stereo Extended Kalman Filter, improving the matching by computing the innovation matrices from the left and the right images. The landmarks are computed from Oriented FAST and Rotated BRIEF (ORB) features for detecting salient points and their descriptors. The covariance matrices of the state and the robot’s map are reduced during the robot’s motion. Experiments are done on the raw images of the Kitti dataset.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"7 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/2-2024/14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneous Localization and Mapping (SLAM) is applied to robots for accurate navigation. The stereo cameras are suitable for visual SLAM as they can give the depth of the visual landmarks and more precise estimations of the robot’s pose. In this paper, we present a survey of SLAM methods, either Bayesian or bioinspired. Then we present a new method of SLAM, which we call stereo Extended Kalman Filter, improving the matching by computing the innovation matrices from the left and the right images. The landmarks are computed from Oriented FAST and Rotated BRIEF (ORB) features for detecting salient points and their descriptors. The covariance matrices of the state and the robot’s map are reduced during the robot’s motion. Experiments are done on the raw images of the Kitti dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 ORB 特征对带有立体摄像头的移动机器人进行同步定位和绘图
同步定位和绘图(SLAM)被应用于机器人的精确导航。立体摄像机适用于视觉 SLAM,因为它们可以提供视觉地标的深度和更精确的机器人姿态估计。在本文中,我们介绍了贝叶斯或生物启发的 SLAM 方法。然后,我们提出了一种新的 SLAM 方法,即立体扩展卡尔曼滤波法,通过计算左右图像的创新矩阵来改进匹配。地标由定向 FAST 和旋转 BRIEF(ORB)特征计算得出,用于检测突出点及其描述符。在机器人运动过程中,状态和机器人地图的协方差矩阵会减小。实验是在 Kitti 数据集的原始图像上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1