Shihong Zhang, Hu Shi, Baizhong Wang, Chunlu Ma, Qinghua Li
{"title":"Research on the Milling Performance of Micro-Groove Ball End Mills for Titanium Alloys","authors":"Shihong Zhang, Hu Shi, Baizhong Wang, Chunlu Ma, Qinghua Li","doi":"10.3390/lubricants12060204","DOIUrl":null,"url":null,"abstract":"Titanium alloys are widely used in various fields, but milling titanium alloy materials often leads to problems such as high milling forces, increased milling temperatures, and chip adhesion. Thus, the machinability of titanium alloys faces challenges. To improve the milling performance of titanium alloy materials, this study analyzes the effective working area on the surface of the milling cutter through mathematical calculations. We design micro-grooves in this area to utilize their friction-reducing and wear-resisting properties to alleviate the aforementioned issues. The effective working area of the ball end milling cutter’s cutting edge is calculated based on the amount of milling and the installation position between the milling cutter and the workpiece. By observing the surface structure of seashells, micro-grooves are proposed and designed to be applied in the working area of the milling cutter surface. The impact of the micro-groove area on the milling cutter surface and spindle speed on milling performance is discussed based on milling simulation and experimental tests. Experimental results show that the cutting force, milling temperature, and chip resistance to adhesion produced by micro-groove milling cutters are superior to conventional milling cutters. Milling cutters with three micro-grooves perform best at different spindle speeds. This is because the presence of micro-grooves on the surface of the milling cutter improves the friction state, promoting a reduction in milling force, while the micro-grooves also serve as storage containers for chips, alleviating the phenomenon of chip softening and adhesion to the cutter. When conducting cutting tests with a milling cutter that has three micro-grooves, the milling force is reduced by 10% to 30%, the milling temperature drops by 10% to 20%, and the surface roughness decreases by 8% to 12%.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"2 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12060204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium alloys are widely used in various fields, but milling titanium alloy materials often leads to problems such as high milling forces, increased milling temperatures, and chip adhesion. Thus, the machinability of titanium alloys faces challenges. To improve the milling performance of titanium alloy materials, this study analyzes the effective working area on the surface of the milling cutter through mathematical calculations. We design micro-grooves in this area to utilize their friction-reducing and wear-resisting properties to alleviate the aforementioned issues. The effective working area of the ball end milling cutter’s cutting edge is calculated based on the amount of milling and the installation position between the milling cutter and the workpiece. By observing the surface structure of seashells, micro-grooves are proposed and designed to be applied in the working area of the milling cutter surface. The impact of the micro-groove area on the milling cutter surface and spindle speed on milling performance is discussed based on milling simulation and experimental tests. Experimental results show that the cutting force, milling temperature, and chip resistance to adhesion produced by micro-groove milling cutters are superior to conventional milling cutters. Milling cutters with three micro-grooves perform best at different spindle speeds. This is because the presence of micro-grooves on the surface of the milling cutter improves the friction state, promoting a reduction in milling force, while the micro-grooves also serve as storage containers for chips, alleviating the phenomenon of chip softening and adhesion to the cutter. When conducting cutting tests with a milling cutter that has three micro-grooves, the milling force is reduced by 10% to 30%, the milling temperature drops by 10% to 20%, and the surface roughness decreases by 8% to 12%.