Zoë E. Wilbur, Timothy J. McCoy, Catherine M. Corrigan, Jessica J. Barnes, Sierra V. Brown, Arya Udry
{"title":"The formation of volatile-bearing djerfisherite in reduced meteorites","authors":"Zoë E. Wilbur, Timothy J. McCoy, Catherine M. Corrigan, Jessica J. Barnes, Sierra V. Brown, Arya Udry","doi":"10.1111/maps.14220","DOIUrl":null,"url":null,"abstract":"<p>Enstatite meteorites, both aubrites and enstatite chondrites, formed under exceptionally reducing conditions, similar to the planet Mercury. Despite being reduced, the MESSENGER mission showed that the surface of Mercury is more enriched in volatiles (e.g., S, Na, K, Cl) than previously thought. To better understand the mineral hosts of these volatiles and how they formed, this work examines the chemistry and petrographic settings of a rare, K-bearing sulfide called djerfisherite within enstatite chondrites and aubrites. The petrographic settings of djerfisherite within aubrites suggest this critical host of Cl formed after both the crystallization of troilite and exsolution of daubréelite. Djerfisherite is commonly observed as a rim on other sulfides and in contact with metal. We present an alteration model for djerfisherite formation in aubrite meteorites, whereby troilite and Fe-Ni metal are altered through anhydrous, alkali- and Cl-rich fluid metasomatism on the aubrite parent body to produce secondary djerfisherite. Moreover, we observe a loss of volatiles in djerfisherite within impact melted regions of the Miller Range 07139 EH3 chondrite and the Bishopville aubrite and explore the potential for impact devolatilization changes to sulfide chemistry on other reduced bodies in the Solar System. Vapor or fluid phase interactions are likely important in the formation of volatile-rich phases in reduced systems. While most Na and K on the mercurian surface is expected to be hosted in feldspar, djerfisherite is likely a minor, but critical, reservoir for K, Na, and Cl. Djerfisherite present on reduced bodies, such as Mercury, may represent sulfides formed via late-stage, primary metasomatism.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2373-2387"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14220","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14220","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Enstatite meteorites, both aubrites and enstatite chondrites, formed under exceptionally reducing conditions, similar to the planet Mercury. Despite being reduced, the MESSENGER mission showed that the surface of Mercury is more enriched in volatiles (e.g., S, Na, K, Cl) than previously thought. To better understand the mineral hosts of these volatiles and how they formed, this work examines the chemistry and petrographic settings of a rare, K-bearing sulfide called djerfisherite within enstatite chondrites and aubrites. The petrographic settings of djerfisherite within aubrites suggest this critical host of Cl formed after both the crystallization of troilite and exsolution of daubréelite. Djerfisherite is commonly observed as a rim on other sulfides and in contact with metal. We present an alteration model for djerfisherite formation in aubrite meteorites, whereby troilite and Fe-Ni metal are altered through anhydrous, alkali- and Cl-rich fluid metasomatism on the aubrite parent body to produce secondary djerfisherite. Moreover, we observe a loss of volatiles in djerfisherite within impact melted regions of the Miller Range 07139 EH3 chondrite and the Bishopville aubrite and explore the potential for impact devolatilization changes to sulfide chemistry on other reduced bodies in the Solar System. Vapor or fluid phase interactions are likely important in the formation of volatile-rich phases in reduced systems. While most Na and K on the mercurian surface is expected to be hosted in feldspar, djerfisherite is likely a minor, but critical, reservoir for K, Na, and Cl. Djerfisherite present on reduced bodies, such as Mercury, may represent sulfides formed via late-stage, primary metasomatism.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.