CM carbonaceous chondrite petrofabrics and their implications for understanding the relative chronologies of parent body deformation and aqueous alteration
C. J. Floyd, L. E. Jenkins, P.-E. Martin, L. Daly, M. R. Lee
{"title":"CM carbonaceous chondrite petrofabrics and their implications for understanding the relative chronologies of parent body deformation and aqueous alteration","authors":"C. J. Floyd, L. E. Jenkins, P.-E. Martin, L. Daly, M. R. Lee","doi":"10.1111/maps.14303","DOIUrl":null,"url":null,"abstract":"<p>CM chondrites have been subjected to numerous alteration processes including brecciation and ductile deformation. Here, we present the results of 2D and 3D petrofabric analysis across a suite of meteorites: Aguas Zarcas, Cold Bokkeveld, Lewis Cliff (LEW) 85311, Murchison, and Winchcombe. We find that chondrule-defined petrofabrics are commonplace, but not ubiquitous. Where petrofabrics are present, alignment is typically observed in the chondrule long axes defining foliation fabrics. Alongside previous authors we interpolate the shock pressures to generate such fabrics between 27.8 and 41.8 GPa. Impacts capable of generating these shock pressures should ordinarily produce shock microstructures in olivine something not observed in the CMs. Whilst high calculated pre-compaction porosities may have had a role in attenuating energy transfer during collisions, we suggest the assumption of chondrule sphericity used in these calculations is misplaced and that a non-spherical pre-deformation chondrule shape is likely responsible for the dichotomy. We also reveal that the relative timings of aqueous alteration, brecciation, and deformation vary between CMs. Within Aguas Zarcas, we find multiple lithic clasts interpreted as having experienced different degrees of aqueous alteration, with opposing fabrics that formed after water/rock interaction but prior to brecciation. Meanwhile, within Cold Bokkeveld, we find a consistent fabric between clasts suggesting the fabric was imposed after both aqueous alteration and brecciation.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 2","pages":"324-346"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14303","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14303","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
CM chondrites have been subjected to numerous alteration processes including brecciation and ductile deformation. Here, we present the results of 2D and 3D petrofabric analysis across a suite of meteorites: Aguas Zarcas, Cold Bokkeveld, Lewis Cliff (LEW) 85311, Murchison, and Winchcombe. We find that chondrule-defined petrofabrics are commonplace, but not ubiquitous. Where petrofabrics are present, alignment is typically observed in the chondrule long axes defining foliation fabrics. Alongside previous authors we interpolate the shock pressures to generate such fabrics between 27.8 and 41.8 GPa. Impacts capable of generating these shock pressures should ordinarily produce shock microstructures in olivine something not observed in the CMs. Whilst high calculated pre-compaction porosities may have had a role in attenuating energy transfer during collisions, we suggest the assumption of chondrule sphericity used in these calculations is misplaced and that a non-spherical pre-deformation chondrule shape is likely responsible for the dichotomy. We also reveal that the relative timings of aqueous alteration, brecciation, and deformation vary between CMs. Within Aguas Zarcas, we find multiple lithic clasts interpreted as having experienced different degrees of aqueous alteration, with opposing fabrics that formed after water/rock interaction but prior to brecciation. Meanwhile, within Cold Bokkeveld, we find a consistent fabric between clasts suggesting the fabric was imposed after both aqueous alteration and brecciation.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.