Dinesh Parida, Rimjhim Sangtani, Regina Nogueira, Kiran Bala
{"title":"Scrutinizing the chemical and morphological alterations of microfibers released from household washing machines under varying temperature conditions","authors":"Dinesh Parida, Rimjhim Sangtani, Regina Nogueira, Kiran Bala","doi":"10.1002/clen.202300285","DOIUrl":null,"url":null,"abstract":"<p>To fulfill a huge demand that is arising globally due to the skyrocketing population, the textile industry is shifting toward cheaper, sturdier, enduring fabrics. Apparently, innovations are turning out to be banes instead of boons, as they are generating a lot of waste, leading to the destruction of the environment. Microfibers are one such example of an emerging environmental contaminant with several irreversible, health, and ecosystem repercussions. This study deals with the effects of temperature on the generation of microfibrils from washing machines. Three different temperatures ranging from lower to higher were considered. The net weight of microfibers released from higher temperatures was found to be 1132.5 ± 41.3 mg/20 L using gravimetric analysis. The fibers released from the higher temperature, that is, 60°C, were 2.7 and 1.6 times higher than those released from colder temperatures, 30 and 40°C, respectively. The length and diameter of these microfibers were in the microplastic size range. The polyester fiber was found to be released in higher amounts after identification with Fourier transform infrared and Raman spectroscopy. The results of this study can help consumers implement sustainable behavior and regulations to lessen the release of microfibers from washing household textiles.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300285","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To fulfill a huge demand that is arising globally due to the skyrocketing population, the textile industry is shifting toward cheaper, sturdier, enduring fabrics. Apparently, innovations are turning out to be banes instead of boons, as they are generating a lot of waste, leading to the destruction of the environment. Microfibers are one such example of an emerging environmental contaminant with several irreversible, health, and ecosystem repercussions. This study deals with the effects of temperature on the generation of microfibrils from washing machines. Three different temperatures ranging from lower to higher were considered. The net weight of microfibers released from higher temperatures was found to be 1132.5 ± 41.3 mg/20 L using gravimetric analysis. The fibers released from the higher temperature, that is, 60°C, were 2.7 and 1.6 times higher than those released from colder temperatures, 30 and 40°C, respectively. The length and diameter of these microfibers were in the microplastic size range. The polyester fiber was found to be released in higher amounts after identification with Fourier transform infrared and Raman spectroscopy. The results of this study can help consumers implement sustainable behavior and regulations to lessen the release of microfibers from washing household textiles.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.