Scrutinizing the chemical and morphological alterations of microfibers released from household washing machines under varying temperature conditions

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Clean-soil Air Water Pub Date : 2024-06-03 DOI:10.1002/clen.202300285
Dinesh Parida, Rimjhim Sangtani, Regina Nogueira, Kiran Bala
{"title":"Scrutinizing the chemical and morphological alterations of microfibers released from household washing machines under varying temperature conditions","authors":"Dinesh Parida,&nbsp;Rimjhim Sangtani,&nbsp;Regina Nogueira,&nbsp;Kiran Bala","doi":"10.1002/clen.202300285","DOIUrl":null,"url":null,"abstract":"<p>To fulfill a huge demand that is arising globally due to the skyrocketing population, the textile industry is shifting toward cheaper, sturdier, enduring fabrics. Apparently, innovations are turning out to be banes instead of boons, as they are generating a lot of waste, leading to the destruction of the environment. Microfibers are one such example of an emerging environmental contaminant with several irreversible, health, and ecosystem repercussions. This study deals with the effects of temperature on the generation of microfibrils from washing machines. Three different temperatures ranging from lower to higher were considered. The net weight of microfibers released from higher temperatures was found to be 1132.5 ± 41.3 mg/20 L using gravimetric analysis. The fibers released from the higher temperature, that is, 60°C, were 2.7 and 1.6 times higher than those released from colder temperatures, 30 and 40°C, respectively. The length and diameter of these microfibers were in the microplastic size range. The polyester fiber was found to be released in higher amounts after identification with Fourier transform infrared and Raman spectroscopy. The results of this study can help consumers implement sustainable behavior and regulations to lessen the release of microfibers from washing household textiles.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300285","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To fulfill a huge demand that is arising globally due to the skyrocketing population, the textile industry is shifting toward cheaper, sturdier, enduring fabrics. Apparently, innovations are turning out to be banes instead of boons, as they are generating a lot of waste, leading to the destruction of the environment. Microfibers are one such example of an emerging environmental contaminant with several irreversible, health, and ecosystem repercussions. This study deals with the effects of temperature on the generation of microfibrils from washing machines. Three different temperatures ranging from lower to higher were considered. The net weight of microfibers released from higher temperatures was found to be 1132.5 ± 41.3 mg/20 L using gravimetric analysis. The fibers released from the higher temperature, that is, 60°C, were 2.7 and 1.6 times higher than those released from colder temperatures, 30 and 40°C, respectively. The length and diameter of these microfibers were in the microplastic size range. The polyester fiber was found to be released in higher amounts after identification with Fourier transform infrared and Raman spectroscopy. The results of this study can help consumers implement sustainable behavior and regulations to lessen the release of microfibers from washing household textiles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究家用洗衣机在不同温度条件下释放的微纤维的化学和形态变化
为了满足全球因人口激增而产生的巨大需求,纺织业正转向生产更便宜、更结实、更耐用的织物。显然,这些创新技术并没有带来任何好处,反而带来了大量的废弃物,导致环境遭到破坏。微纤维就是这样一个例子,它是一种新出现的环境污染物,对健康和生态系统造成了一些不可逆转的影响。本研究探讨了温度对洗衣机产生微纤维的影响。研究考虑了从较低到较高的三种不同温度。通过重量分析发现,较高温度下释放的微纤维净重量为 1132.5 ± 41.3 mg/20 L。从较高温度(即 60°C)释放的纤维分别比从较低温度(即 30°C 和 40°C)释放的纤维高 2.7 倍和 1.6 倍。这些微纤维的长度和直径都在微塑料尺寸范围内。经傅立叶变换红外光谱和拉曼光谱鉴定后发现,聚酯纤维的释放量较高。这项研究的结果有助于消费者实施可持续的行为和法规,以减少洗涤家用纺织品时释放的微纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
期刊最新文献
Issue Information: Clean Soil Air Water. 12/2024 Holistic Management of Wastewater Pollution Through Biological Treatment: A Sustainable Future Anaerobic Naphthalene Biotransformation Coupled to Sulfate Reduction Commercial Blue Textile Dye Decolorization Using Aspergillus oryzae RH1 Isolated From Fermented Miso Issue Information: Clean Soil Air Water. 11/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1