Advanced Device Architecture Strategies for Decoupled Water Splitting: A Review

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-06-03 DOI:10.1021/acsmaterialslett.4c00745
Ankita Mathur,  and , Charles E. Diesendruck*, 
{"title":"Advanced Device Architecture Strategies for Decoupled Water Splitting: A Review","authors":"Ankita Mathur,&nbsp; and ,&nbsp;Charles E. Diesendruck*,&nbsp;","doi":"10.1021/acsmaterialslett.4c00745","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical water-splitting processes are a safe, sustainable, and ecofriendly method to generate pure hydrogen, with minimal carbon emission. Typically, water reduction (hydrogen evolution) and oxidation (oxygen evolution) occur simultaneously, although such coupled processes lead to several limitations such as gas crossover, electrocatalyst degradation by reactive oxygen species, and more. This review presents several strategies to design decoupled water splitting devices, separating the two half-reactions spatially and temporally, to address several of these issues. The designs change according to the electrode materials, electrolyte, and decoupling strategy employed (redox mediator). The review describes how the decoupling mechanisms adopted affect different properties and lead to designs with optimal efficiency. It also focuses on their integration with renewable energy, which can be used to power each half-reaction independently. Lastly, the merits and constraints of the decoupled systems in addressing global environmental issues are discussed along with potential questions to further advance this technology-based strategy.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c00745","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00745","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water-splitting processes are a safe, sustainable, and ecofriendly method to generate pure hydrogen, with minimal carbon emission. Typically, water reduction (hydrogen evolution) and oxidation (oxygen evolution) occur simultaneously, although such coupled processes lead to several limitations such as gas crossover, electrocatalyst degradation by reactive oxygen species, and more. This review presents several strategies to design decoupled water splitting devices, separating the two half-reactions spatially and temporally, to address several of these issues. The designs change according to the electrode materials, electrolyte, and decoupling strategy employed (redox mediator). The review describes how the decoupling mechanisms adopted affect different properties and lead to designs with optimal efficiency. It also focuses on their integration with renewable energy, which can be used to power each half-reaction independently. Lastly, the merits and constraints of the decoupled systems in addressing global environmental issues are discussed along with potential questions to further advance this technology-based strategy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于解耦水分离的先进设备架构策略:综述
电化学分水工艺是一种安全、可持续和生态友好的方法,用于产生纯氢,同时将碳排放量降至最低。通常情况下,水的还原(氢进化)和氧化(氧进化)是同时进行的,但这种耦合过程会导致一些限制,如气体交叉、活性氧导致电催化剂降解等。本综述介绍了设计解耦水分离装置的几种策略,在空间和时间上分离两个半反应,以解决上述几个问题。这些设计根据所采用的电极材料、电解质和去耦策略(氧化还原介质)的不同而有所变化。本综述介绍了所采用的去耦机制如何影响不同的特性,并导致具有最佳效率的设计。此外,还重点介绍了它们与可再生能源的整合,可再生能源可用于为每个半反应独立供电。最后,还讨论了解耦系统在解决全球环境问题方面的优点和制约因素,以及进一步推进这种基于技术的战略的潜在问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Tailoring Surface Electronic Structure of Spinel Co3O4 Oxide via Fe and Cu Substitution for Enhanced Oxygen Evolution Reaction Magnetic Microactuators Based on Particle Jamming Novel NIR-II 3,5-Julolidinyl aza-BODIPY for Photothermal Therapy of Gliomas Stem Cells by Brain Stereotactic Injection New Concept for HLCT Emitter: Acceptor Molecule in Exciplex System for Highly Efficient and Extremely Low-Efficiency Roll-Off Solution-Processed OLED Enhancing Nanomaterial-Based Optical Spectroscopic Detection of Cancer through Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1