{"title":"Quantum computing challenges and solutions in software industry—A multivocal literature review","authors":"Masaud Salam, Muhammad Ilyas","doi":"10.1049/qtc2.12096","DOIUrl":null,"url":null,"abstract":"Quantum computing (QC) hinged upon the bedrock principles of quantum theory and holds promise for reforming a large number of industries. The researcher in this area aims to deliver a comprehensive understanding of the current state of the art and future trajectories of QC. The authors have discovered that most academic studies have concentrated upon dissecting specific aspects of QC. This discernment underscores the exigency of identifying challenges that might impede the seamless integration of QC within the software industry. Moreover, it becomes crucial to ascertain the panoply of solutions/practices required to overcome these barriers. A comprehensive multi‐vocal literature review was performed and culled a total of 49 academic papers for data extraction. A total of 13 challenges encountered by organisations were identified during the adoption of QC. Subsequently, these challenges were examined deeply and determined that five of them are the most critical, these are ‘Lack of quantum specific algorithms, dev and testing methodologies’, ‘Difficult compilation and debugging’, ‘Lack of development tools and technology’, ‘Lack of development guidelines & Quality Assurance Standards’ and ‘Lack of professional expert’, together founding over 30% of occurrences. These challenges from various perspectives were evaluated, including time frame, methodology, geographical region and publication platform. To address these barriers and implement the QC in software industry effectively, a total of 53 practices/solutions. This research aims to share valuable knowledge to simplify and amplify quantum application development.","PeriodicalId":507937,"journal":{"name":"IET Quantum Communication","volume":"49 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/qtc2.12096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum computing (QC) hinged upon the bedrock principles of quantum theory and holds promise for reforming a large number of industries. The researcher in this area aims to deliver a comprehensive understanding of the current state of the art and future trajectories of QC. The authors have discovered that most academic studies have concentrated upon dissecting specific aspects of QC. This discernment underscores the exigency of identifying challenges that might impede the seamless integration of QC within the software industry. Moreover, it becomes crucial to ascertain the panoply of solutions/practices required to overcome these barriers. A comprehensive multi‐vocal literature review was performed and culled a total of 49 academic papers for data extraction. A total of 13 challenges encountered by organisations were identified during the adoption of QC. Subsequently, these challenges were examined deeply and determined that five of them are the most critical, these are ‘Lack of quantum specific algorithms, dev and testing methodologies’, ‘Difficult compilation and debugging’, ‘Lack of development tools and technology’, ‘Lack of development guidelines & Quality Assurance Standards’ and ‘Lack of professional expert’, together founding over 30% of occurrences. These challenges from various perspectives were evaluated, including time frame, methodology, geographical region and publication platform. To address these barriers and implement the QC in software industry effectively, a total of 53 practices/solutions. This research aims to share valuable knowledge to simplify and amplify quantum application development.