Real-time seedless post-processing for quantum random number generators

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2024-12-11 DOI:10.1049/qtc2.12118
Qian Li, Hongyi Zhou
{"title":"Real-time seedless post-processing for quantum random number generators","authors":"Qian Li,&nbsp;Hongyi Zhou","doi":"10.1049/qtc2.12118","DOIUrl":null,"url":null,"abstract":"<p>Quantum-proof randomness extraction is essential for handling quantum side information possessed by a quantum adversary, which is widely applied in various quantum cryptography tasks. In this study, the authors introduce a real-time two-source quantum randomness extractor against quantum side information. The authors’ extractor is tailored for forward block sources, a novel category of min-entropy sources introduced in this work. These sources retain the flexibility to accommodate a broad range of quantum random number generators. The authors’ online algorithms demonstrate the extraction of a constant fraction of min-entropy from two infinitely long independent forward block sources. Moreover, the authors’ extractor is inherently block-wise parallelisable, presenting a practical and efficient solution for the timely extraction of high-quality randomness. Applying the authors’ extractors to the raw data of one of the most commonly used quantum random number generators, a simulated extraction speed as high as 64 Gbps is achieved.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"650-657"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12118","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum-proof randomness extraction is essential for handling quantum side information possessed by a quantum adversary, which is widely applied in various quantum cryptography tasks. In this study, the authors introduce a real-time two-source quantum randomness extractor against quantum side information. The authors’ extractor is tailored for forward block sources, a novel category of min-entropy sources introduced in this work. These sources retain the flexibility to accommodate a broad range of quantum random number generators. The authors’ online algorithms demonstrate the extraction of a constant fraction of min-entropy from two infinitely long independent forward block sources. Moreover, the authors’ extractor is inherently block-wise parallelisable, presenting a practical and efficient solution for the timely extraction of high-quality randomness. Applying the authors’ extractors to the raw data of one of the most commonly used quantum random number generators, a simulated extraction speed as high as 64 Gbps is achieved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Quantum teleportation in higher dimension and entanglement distribution via quantum switches Real-time seedless post-processing for quantum random number generators Quantum blockchain: Trends, technologies, and future directions Quantum anonymous one vote veto protocol based on entanglement swapping Enhanced QSVM with elitist non-dominated sorting genetic optimisation algorithm for breast cancer diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1