Self-healing hydrogel prepared from gallic acid coupled P(NIPAM-co-AH) and oxidized sodium alginate for diabetic wound repairing

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED Reactive & Functional Polymers Pub Date : 2024-05-31 DOI:10.1016/j.reactfunctpolym.2024.105951
Weichen Sun , Jingjing Zhu , Zhe Cui , Chengyan Zhou , Shuai Guo , Wenjuan Li , Jianglei Qin
{"title":"Self-healing hydrogel prepared from gallic acid coupled P(NIPAM-co-AH) and oxidized sodium alginate for diabetic wound repairing","authors":"Weichen Sun ,&nbsp;Jingjing Zhu ,&nbsp;Zhe Cui ,&nbsp;Chengyan Zhou ,&nbsp;Shuai Guo ,&nbsp;Wenjuan Li ,&nbsp;Jianglei Qin","doi":"10.1016/j.reactfunctpolym.2024.105951","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the complex wound microenvironment, diabetic wound repairing remains as an important clinical problem caused by excessive ROS, bacterial infection and persistent inflammation. In this study, gallic acid (GA) was grafted onto the P(NIPAM-co-AH) copolymers to synthesize functional copolymer with hydrazide functional group and GA moiety (PNHG). Then the PNHG was cross-linked by sodium alginate oxide (OSA) to fabricate self-healing hydrogel with multifunctionalility of tissue adhesion, ROS scavenging, biodegradability and antibacterial property. The multifunctional hydrogel showed expected advantages proved the GA enhanced the ROS scavenging property, tissue adhesion and antibacterial activity. Moreover, the hydrogel preserved the biocompatibility and the biodegradability of the precursors. Furthermore, the multifunctional hydrogel showed improved hemostatic property and greatly promoted repairing rate of diabetic wounds on mice model in vivo. In conclusion, this multifunctional PNHG/OSA hydrogel can play a important role as wound dressing in the future.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824001263","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the complex wound microenvironment, diabetic wound repairing remains as an important clinical problem caused by excessive ROS, bacterial infection and persistent inflammation. In this study, gallic acid (GA) was grafted onto the P(NIPAM-co-AH) copolymers to synthesize functional copolymer with hydrazide functional group and GA moiety (PNHG). Then the PNHG was cross-linked by sodium alginate oxide (OSA) to fabricate self-healing hydrogel with multifunctionalility of tissue adhesion, ROS scavenging, biodegradability and antibacterial property. The multifunctional hydrogel showed expected advantages proved the GA enhanced the ROS scavenging property, tissue adhesion and antibacterial activity. Moreover, the hydrogel preserved the biocompatibility and the biodegradability of the precursors. Furthermore, the multifunctional hydrogel showed improved hemostatic property and greatly promoted repairing rate of diabetic wounds on mice model in vivo. In conclusion, this multifunctional PNHG/OSA hydrogel can play a important role as wound dressing in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用没食子酸偶联 P(NIPAM-co-AH)和氧化海藻酸钠制备用于糖尿病伤口修复的自愈合水凝胶
由于伤口微环境复杂,过度的 ROS、细菌感染和持续的炎症导致糖尿病伤口修复仍是一个重要的临床问题。本研究将没食子酸(GA)接枝到 P(NIPAM-co-AH)共聚物上,合成了具有酰肼官能团和 GA 分子的功能性共聚物(PNHG)。然后用氧化海藻酸钠(OSA)交联 PNHG,制成具有组织粘附、清除 ROS、生物降解和抗菌等多功能性的自愈合水凝胶。多功能水凝胶显示出了预期的优势,证明 GA 增强了 ROS 清除性能、组织粘附性和抗菌活性。此外,水凝胶还保持了前体的生物相容性和生物可降解性。此外,该多功能水凝胶还改善了止血性能,大大提高了糖尿病模型小鼠体内伤口的修复率。总之,这种多功能 PNHG/OSA 水凝胶未来可作为伤口敷料发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
期刊最新文献
Functionalized carbon nanotube-quantum dot thin film nanocomposite membrane for separation of β-substituted-α-amino acid enantiomers Preparation and performance study of N-LAC/MoS2/PVDF ion exchange membrane in microbial desalination cells Facile synthesis of carbon dioxide and UV light dual-responsive asymmetric tetrablock polymers Effect of antioxidant structure on bromobutyl rubber composites' processability and age resistance Gallic acid modified and green cross-linked chitosan-dialdehyde cellulose antibacterial aerogels and adsorption of anionic dyes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1