Combining Software-Defined and Delay-Tolerant Networking Concepts With Deep Reinforcement Learning Technology to Enhance Vehicular Networks

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2024-03-03 DOI:10.1109/OJVT.2024.3396637
Olivia Nakayima;Mostafa I. Soliman;Kazunori Ueda;Samir A. Elsagheer Mohamed
{"title":"Combining Software-Defined and Delay-Tolerant Networking Concepts With Deep Reinforcement Learning Technology to Enhance Vehicular Networks","authors":"Olivia Nakayima;Mostafa I. Soliman;Kazunori Ueda;Samir A. Elsagheer Mohamed","doi":"10.1109/OJVT.2024.3396637","DOIUrl":null,"url":null,"abstract":"Ensuring reliable data transmission in all Vehicular Ad-hoc Network (VANET) segments is paramount in modern vehicular communications. Vehicular operations face unpredictable network conditions which affect routing protocol adaptiveness. Several solutions have addressed those challenges, but each has noted shortcomings. This work proposes a centralised-controller multi-agent (CCMA) algorithm based on Software-Defined Networking (SDN) and Delay-Tolerant Networking (DTN) principles, to enhance VANET performance using Reinforcement Learning (RL). This algorithm is trained and validated with a simulation environment modelling the network nodes, routing protocols and buffer schedules. It optimally deploys DTN routing protocols (Spray and Wait, Epidemic, and PRoPHETv2) and buffer schedules (Random, Defer, Earliest Deadline First, First In First Out, Large/smallest bundle first) based on network state information (that is; traffic pattern, buffer size variance, node and link uptime, bundle Time To Live (TTL), link loss and capacity). These are implemented in three environment types; Advanced Technological Regions, Limited Resource Regions and Opportunistic Communication Regions. The study assesses the performance of the multi-protocol approach using metrics: TTL, buffer management,link quality, delivery ratio, Latency and overhead scores for optimal network performance. Comparative analysis with single-protocol VANETs (simulated using the Opportunistic Network Environment (ONE)), demonstrate an improved performance of the proposed algorithm in all VANET scenarios.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10518068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10518068/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring reliable data transmission in all Vehicular Ad-hoc Network (VANET) segments is paramount in modern vehicular communications. Vehicular operations face unpredictable network conditions which affect routing protocol adaptiveness. Several solutions have addressed those challenges, but each has noted shortcomings. This work proposes a centralised-controller multi-agent (CCMA) algorithm based on Software-Defined Networking (SDN) and Delay-Tolerant Networking (DTN) principles, to enhance VANET performance using Reinforcement Learning (RL). This algorithm is trained and validated with a simulation environment modelling the network nodes, routing protocols and buffer schedules. It optimally deploys DTN routing protocols (Spray and Wait, Epidemic, and PRoPHETv2) and buffer schedules (Random, Defer, Earliest Deadline First, First In First Out, Large/smallest bundle first) based on network state information (that is; traffic pattern, buffer size variance, node and link uptime, bundle Time To Live (TTL), link loss and capacity). These are implemented in three environment types; Advanced Technological Regions, Limited Resource Regions and Opportunistic Communication Regions. The study assesses the performance of the multi-protocol approach using metrics: TTL, buffer management,link quality, delivery ratio, Latency and overhead scores for optimal network performance. Comparative analysis with single-protocol VANETs (simulated using the Opportunistic Network Environment (ONE)), demonstrate an improved performance of the proposed algorithm in all VANET scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将软件定义和容错网络概念与深度强化学习技术相结合,增强车载网络功能
在现代车载通信中,确保所有车载 Ad-hoc 网络(VANET)段的数据传输可靠至关重要。车辆运行面临着不可预测的网络条件,这影响了路由协议的适应性。有几种解决方案可以应对这些挑战,但每种解决方案都有明显的不足之处。这项工作提出了一种基于软件定义网络(SDN)和延迟容忍网络(DTN)原理的集中控制多代理(CCMA)算法,利用强化学习(RL)提高 VANET 性能。该算法通过模拟网络节点、路由协议和缓冲调度的仿真环境进行训练和验证。它根据网络状态信息(即流量模式、缓冲区大小差异、节点和链路正常运行时间、缓冲区存活时间(TTL)、链路损耗和容量),优化部署 DTN 路由协议(喷洒和等待、流行和 PRoPHETv2)和缓冲区计划(随机、延迟、最早截止时间优先、先进先出、大/小捆绑优先)。这些在三种环境类型中实施:先进技术区域、资源有限区域和机会通信区域。研究使用以下指标评估多协议方法的性能:TTL、缓冲区管理、链路质量、传送率、延迟和开销分数,以实现最佳网络性能。与单协议 VANET(使用机会主义网络环境 (ONE) 模拟)的比较分析表明,在所有 VANET 场景中,拟议算法的性能都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Digital Twin-Empowered Green Mobility Management in Next-Gen Transportation Networks Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13 Partial Learning-Based Iterative Detection of MIMO Systems Decentralized and Asymmetric Multi-Agent Learning in Construction Sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1