Michal Frivaldsky;Matúš Danko;Tristan Schoenfelder;Martin Zavrel
{"title":"Design Issues of Hybrid Energy Storage Systems of Electric Vehicles According to Driving Profiles","authors":"Michal Frivaldsky;Matúš Danko;Tristan Schoenfelder;Martin Zavrel","doi":"10.1109/OJVT.2025.3536176","DOIUrl":null,"url":null,"abstract":"This article examines the design challenges of hybrid energy storage systems (HESS) for electric vehicles (EVs), focusing on optimization based on driving profiles. Rising carbon dioxide emissions, especially in road traffic, require advanced energy solutions. In particular, electric vehicles offer great potential for reducing emissions in the transport sector. However, existing energy storage technologies such as lithium batteries have significant limitations in terms of power and energy density as well as cost efficiency, etc. To address these limitations, this study examines battery-SC hybrid systems, which represent a form of HESS. Using MATLAB Simulink, energy and power requirements are calculated for selected urban, combined, and motorway driving cycles. Based on the simulation results, which are obtained from mathematical vehicle dynamics models, this paper determines optimal configurations for battery and SC modules. Key findings highlight the trade-offs in performance, weight, and cost when designing HESS for varying vehicle classes. The study concludes that while HESS solutions significantly enhance energy efficiency and extend battery lifespan, their implementation remains complex and cost-intensive for medium and high-class vehicles. For lower-class vehicles, HESS offers an effective strategy to balance energy and power demands, contributing to sustainable transport solutions. The results provide important insights for the development of scalable and efficient hybrid storage systems that are designed for specific driving conditions.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"619-631"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10857387","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10857387/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article examines the design challenges of hybrid energy storage systems (HESS) for electric vehicles (EVs), focusing on optimization based on driving profiles. Rising carbon dioxide emissions, especially in road traffic, require advanced energy solutions. In particular, electric vehicles offer great potential for reducing emissions in the transport sector. However, existing energy storage technologies such as lithium batteries have significant limitations in terms of power and energy density as well as cost efficiency, etc. To address these limitations, this study examines battery-SC hybrid systems, which represent a form of HESS. Using MATLAB Simulink, energy and power requirements are calculated for selected urban, combined, and motorway driving cycles. Based on the simulation results, which are obtained from mathematical vehicle dynamics models, this paper determines optimal configurations for battery and SC modules. Key findings highlight the trade-offs in performance, weight, and cost when designing HESS for varying vehicle classes. The study concludes that while HESS solutions significantly enhance energy efficiency and extend battery lifespan, their implementation remains complex and cost-intensive for medium and high-class vehicles. For lower-class vehicles, HESS offers an effective strategy to balance energy and power demands, contributing to sustainable transport solutions. The results provide important insights for the development of scalable and efficient hybrid storage systems that are designed for specific driving conditions.