Kandel Jeevan, Shrestha Palistha, Hilal Tayara, Kil T. Chong
{"title":"PUResNetV2.0: a deep learning model leveraging sparse representation for improved ligand binding site prediction","authors":"Kandel Jeevan, Shrestha Palistha, Hilal Tayara, Kil T. Chong","doi":"10.1186/s13321-024-00865-6","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed that PUResNetV2.0 achieved an 85.4% Distance Center Atom (DCA) success rate and a 74.7% F1 Score on the Holo801 dataset, outperforming existing methods. However, its performance in specific cases, such as RNA, DNA, peptide-like ligand, and ion binding site prediction, was limited due to constraints in our training data. Our findings underscore the potential of sparse representation in LBSP, especially for oligomeric structures, suggesting PUResNetV2.0 as a promising tool for computational drug discovery.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00865-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00865-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate ligand binding site prediction (LBSP) within proteins is essential for drug discovery. We developed ProteinUNetResNetV2.0 (PUResNetV2.0), leveraging sparse representation of protein structures to improve LBSP accuracy. Our training dataset included protein complexes from 4729 protein families. Evaluations on benchmark datasets showed that PUResNetV2.0 achieved an 85.4% Distance Center Atom (DCA) success rate and a 74.7% F1 Score on the Holo801 dataset, outperforming existing methods. However, its performance in specific cases, such as RNA, DNA, peptide-like ligand, and ion binding site prediction, was limited due to constraints in our training data. Our findings underscore the potential of sparse representation in LBSP, especially for oligomeric structures, suggesting PUResNetV2.0 as a promising tool for computational drug discovery.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.