Multifunctional MoS2 membrane for integrated solar-driven water evaporation and water purification

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-06-06 DOI:10.1038/s43246-024-00532-1
Lingfang Cui, Huinan Che, Bin Liu, Yanhui Ao
{"title":"Multifunctional MoS2 membrane for integrated solar-driven water evaporation and water purification","authors":"Lingfang Cui, Huinan Che, Bin Liu, Yanhui Ao","doi":"10.1038/s43246-024-00532-1","DOIUrl":null,"url":null,"abstract":"Solar-driven interfacial water evaporation shows great potential to address the global water crisis, but its efficient implementation in the presence of organic wastewater remains challenging. Here, we achieved integrated water evaporation and organic compound degradation by designing a multifunctional MoS2 membrane. Under 1.0 sun irradiation, the membrane exhibits an evaporation rate of 2.07 kg m−2 h−1 and 82% degradation efficiency of organic pollutants, with negligible organic pollutant residues in the condensate. The high performance is attributed to the thermal energy generated by the evaporation process of MoS2 membrane. This promotes an increase in the rate constant of interfacial electron transfer during the photocatalytic reaction, accelerating the generation of free radicals and facilitating the removal of organic pollutants. The study demonstrated that fresh water can be collected from high-salinity wastewater at a rate of 1.56 kg m−2 h−1. The MoS2 membrane provides a sustainable approach to addressing the water crisis. Solar-driven treatment of organic wastewater is important for ensuring clean water access. Here, integrated water evaporation and organic compound degradation is achieved in an MoS2-based membrane, achieving an evaporation rate of 2.07 kg m−2 h−1 and 82% degradation efficiency for organic pollutants.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00532-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00532-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven interfacial water evaporation shows great potential to address the global water crisis, but its efficient implementation in the presence of organic wastewater remains challenging. Here, we achieved integrated water evaporation and organic compound degradation by designing a multifunctional MoS2 membrane. Under 1.0 sun irradiation, the membrane exhibits an evaporation rate of 2.07 kg m−2 h−1 and 82% degradation efficiency of organic pollutants, with negligible organic pollutant residues in the condensate. The high performance is attributed to the thermal energy generated by the evaporation process of MoS2 membrane. This promotes an increase in the rate constant of interfacial electron transfer during the photocatalytic reaction, accelerating the generation of free radicals and facilitating the removal of organic pollutants. The study demonstrated that fresh water can be collected from high-salinity wastewater at a rate of 1.56 kg m−2 h−1. The MoS2 membrane provides a sustainable approach to addressing the water crisis. Solar-driven treatment of organic wastewater is important for ensuring clean water access. Here, integrated water evaporation and organic compound degradation is achieved in an MoS2-based membrane, achieving an evaporation rate of 2.07 kg m−2 h−1 and 82% degradation efficiency for organic pollutants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于太阳能驱动的水蒸发和水净化一体化的多功能 MoS2 膜
太阳能驱动的界面水蒸发在解决全球水危机方面显示出巨大的潜力,但在有机废水存在的情况下有效实施这一技术仍具有挑战性。在这里,我们通过设计一种多功能 MoS2 膜,实现了水蒸发和有机化合物降解的一体化。在 1.0 太阳光照射下,该膜的蒸发率为 2.07 kg m-2 h-1,有机污染物的降解效率为 82%,冷凝液中的有机污染物残留量几乎可以忽略不计。高性能归功于 MoS2 膜蒸发过程中产生的热能。这促进了光催化反应过程中界面电子传递速率常数的增加,加速了自由基的生成,有利于有机污染物的去除。研究表明,从高盐度废水中收集淡水的速度可达 1.56 kg m-2 h-1。MoS2 膜为解决水危机提供了一种可持续的方法。太阳能驱动的有机废水处理对确保获得清洁水非常重要。在这里,基于 MoS2 的膜实现了水蒸发和有机化合物降解的一体化,蒸发率达到 2.07 kg m-2 h-1,有机污染物降解效率达到 82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Thermodynamic evidence for polaron stabilization inside the antiferromagnetic order of Eu5In2Sb6 Benefits and complexity of defects in metal-organic frameworks Multi-sensing yarns for continuous wireless sweat lactate monitoring Unexpected band structure changes within the higher-temperature antiferromagnetic state of CeBi Bioengineering approach for the design of magnetic bacterial cellulose membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1