{"title":"Multifunctional MoS2 membrane for integrated solar-driven water evaporation and water purification","authors":"Lingfang Cui, Huinan Che, Bin Liu, Yanhui Ao","doi":"10.1038/s43246-024-00532-1","DOIUrl":null,"url":null,"abstract":"Solar-driven interfacial water evaporation shows great potential to address the global water crisis, but its efficient implementation in the presence of organic wastewater remains challenging. Here, we achieved integrated water evaporation and organic compound degradation by designing a multifunctional MoS2 membrane. Under 1.0 sun irradiation, the membrane exhibits an evaporation rate of 2.07 kg m−2 h−1 and 82% degradation efficiency of organic pollutants, with negligible organic pollutant residues in the condensate. The high performance is attributed to the thermal energy generated by the evaporation process of MoS2 membrane. This promotes an increase in the rate constant of interfacial electron transfer during the photocatalytic reaction, accelerating the generation of free radicals and facilitating the removal of organic pollutants. The study demonstrated that fresh water can be collected from high-salinity wastewater at a rate of 1.56 kg m−2 h−1. The MoS2 membrane provides a sustainable approach to addressing the water crisis. Solar-driven treatment of organic wastewater is important for ensuring clean water access. Here, integrated water evaporation and organic compound degradation is achieved in an MoS2-based membrane, achieving an evaporation rate of 2.07 kg m−2 h−1 and 82% degradation efficiency for organic pollutants.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00532-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00532-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven interfacial water evaporation shows great potential to address the global water crisis, but its efficient implementation in the presence of organic wastewater remains challenging. Here, we achieved integrated water evaporation and organic compound degradation by designing a multifunctional MoS2 membrane. Under 1.0 sun irradiation, the membrane exhibits an evaporation rate of 2.07 kg m−2 h−1 and 82% degradation efficiency of organic pollutants, with negligible organic pollutant residues in the condensate. The high performance is attributed to the thermal energy generated by the evaporation process of MoS2 membrane. This promotes an increase in the rate constant of interfacial electron transfer during the photocatalytic reaction, accelerating the generation of free radicals and facilitating the removal of organic pollutants. The study demonstrated that fresh water can be collected from high-salinity wastewater at a rate of 1.56 kg m−2 h−1. The MoS2 membrane provides a sustainable approach to addressing the water crisis. Solar-driven treatment of organic wastewater is important for ensuring clean water access. Here, integrated water evaporation and organic compound degradation is achieved in an MoS2-based membrane, achieving an evaporation rate of 2.07 kg m−2 h−1 and 82% degradation efficiency for organic pollutants.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.