Identification of dynamic coefficient matrix for drilling process simulations from measured tool geometry, axial force and torque

IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING CIRP Journal of Manufacturing Science and Technology Pub Date : 2024-06-08 DOI:10.1016/j.cirpj.2024.05.018
R. Lorain , Z.M. Kilic , F. Valiorgue , J. Rech , Y. Altintas
{"title":"Identification of dynamic coefficient matrix for drilling process simulations from measured tool geometry, axial force and torque","authors":"R. Lorain ,&nbsp;Z.M. Kilic ,&nbsp;F. Valiorgue ,&nbsp;J. Rech ,&nbsp;Y. Altintas","doi":"10.1016/j.cirpj.2024.05.018","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to quantitatively analyze the relationship between forces acting on the tool tip and tool movement during drilling operations. The study encompasses axial and lateral vibrations superimposed on the nominal tool movement, arising from rigid body motion (rotational and axial velocities). Specifically, only forces attributed to the cutting process are considered, excluding considerations of indentation forces around the chisel edge. The research adopts a generalized approach, spanning from tool measurements to establishing the force model. The investigation involves measuring cutting forces and correlating them with the varying rake and inclination angles of the drill’s cutting edges. An analytical model is proposed to describe the distribution of all local force components along drill edges, considering the evolution of forces and geometry. The dynamic coefficient matrix is evaluated by using the identified cutting coefficient and tool geometry. Validation of the proposed methodology is demonstrated through drilling experiments on Ti6Al4V alloy, utilizing three solid carbide drills with distinct geometries. The proposed procedure allows complete identification of the dynamic characteristics from the measurements taken at the entrance stage of hole drilling operation. Moreover, the influence of tool geometry on cutting coefficients and dynamic coefficient matrices are discussed.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 159-174"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724000786","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to quantitatively analyze the relationship between forces acting on the tool tip and tool movement during drilling operations. The study encompasses axial and lateral vibrations superimposed on the nominal tool movement, arising from rigid body motion (rotational and axial velocities). Specifically, only forces attributed to the cutting process are considered, excluding considerations of indentation forces around the chisel edge. The research adopts a generalized approach, spanning from tool measurements to establishing the force model. The investigation involves measuring cutting forces and correlating them with the varying rake and inclination angles of the drill’s cutting edges. An analytical model is proposed to describe the distribution of all local force components along drill edges, considering the evolution of forces and geometry. The dynamic coefficient matrix is evaluated by using the identified cutting coefficient and tool geometry. Validation of the proposed methodology is demonstrated through drilling experiments on Ti6Al4V alloy, utilizing three solid carbide drills with distinct geometries. The proposed procedure allows complete identification of the dynamic characteristics from the measurements taken at the entrance stage of hole drilling operation. Moreover, the influence of tool geometry on cutting coefficients and dynamic coefficient matrices are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据测得的刀具几何形状、轴向力和扭矩确定钻孔过程模拟的动态系数矩阵
本文旨在定量分析钻孔操作过程中作用在刀尖上的力与刀具运动之间的关系。研究包括由刚体运动(旋转速度和轴向速度)引起的、叠加在名义刀具运动上的轴向和横向振动。具体来说,只考虑切削过程中产生的力,不考虑凿子边缘周围的压痕力。研究采用了一种通用方法,从刀具测量到建立力模型。调查包括测量切削力,并将其与钻头切削刃的不同前角和倾角联系起来。考虑到力和几何形状的演变,提出了一个分析模型来描述沿钻头边缘的所有局部力分量的分布。利用确定的切削系数和刀具几何形状对动态系数矩阵进行评估。通过对 Ti6Al4V 合金进行钻孔实验,利用三种不同几何形状的整体硬质合金钻头,验证了所提出的方法。所提出的程序可以从钻孔操作入口阶段的测量结果中完整识别动态特性。此外,还讨论了刀具几何形状对切削系数和动态系数矩阵的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
期刊最新文献
Resilience compass navigation through manufacturing organization uncertainty – A dynamic capabilities approach using mixed methods A structured digital twinning approach to improve decision-making in manufacturing SMEs Numerical simulation of molten pool flow behavior in ultrasonic vibration-assisted gas tungsten arc welding of low-alloy high-strength steel Hybrid FE-ML model for turning of 42CrMo4 steel Study on the effect of variable laser power on residual stress distribution in laser directed energy deposition of Ti6Al4V
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1