Nanostructuring of the titanium alloy Ti-13Nb-13Zr (NanoTNZ) for osteosynthesis implants by continuous multidirectional swaging

IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING CIRP Journal of Manufacturing Science and Technology Pub Date : 2025-02-05 DOI:10.1016/j.cirpj.2025.01.008
Lukas Kluy , Peter Groche , Lina Klinge , Carsten Siemers , Christopher Spiegel
{"title":"Nanostructuring of the titanium alloy Ti-13Nb-13Zr (NanoTNZ) for osteosynthesis implants by continuous multidirectional swaging","authors":"Lukas Kluy ,&nbsp;Peter Groche ,&nbsp;Lina Klinge ,&nbsp;Carsten Siemers ,&nbsp;Christopher Spiegel","doi":"10.1016/j.cirpj.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>Musculoskeletal traumata involving damaged bones can reduce patients’ mobility and be life-threatening due to fracture-related infections. Osteosynthesis implants are increasingly vital for stabilizing fractures, especially with the growing prevalence of osteoporotic fractures in the aging population. However, advancements in manufacturing research are crucial for enhancing the biomechanical properties of these implants, improving healing outcomes, and enabling large-scale production. This study focuses on the development of a novel manufacturing process for the nanostructured titanium alloy Ti-13Nb-13Zr (NanoTNZ) using continuous multidirectional swaging (CMDS) followed by recrystallization and ageing. Various thermomechanical parameters were explored to ensure homogeneous strain and hardness distribution and fully nanostructure the alloy. Process limitations such as chevron cracks and shear bands were overcome by applying counter pressure for hydrostatic compression stress, enabling damage-free forming. Ageing of CMDS-TNZ leads to partial α''-martensite decomposition into finer structures of α<sub>s</sub> and β phase resulting in a microstructure with substructures smaller than 100 nm. NanoTNZ exhibits a Young's modulus of 92 GPa, an ultimate tensile strength of 981 MPa, and 8 % elongation at rupture. A bone plate of NanoTNZ was manufactured to demonstrate the efficacy of this continuous thermomechanical nanostructuring technique to produce next generation osteosynthesis implants.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"58 ","pages":"Pages 47-61"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000082","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Musculoskeletal traumata involving damaged bones can reduce patients’ mobility and be life-threatening due to fracture-related infections. Osteosynthesis implants are increasingly vital for stabilizing fractures, especially with the growing prevalence of osteoporotic fractures in the aging population. However, advancements in manufacturing research are crucial for enhancing the biomechanical properties of these implants, improving healing outcomes, and enabling large-scale production. This study focuses on the development of a novel manufacturing process for the nanostructured titanium alloy Ti-13Nb-13Zr (NanoTNZ) using continuous multidirectional swaging (CMDS) followed by recrystallization and ageing. Various thermomechanical parameters were explored to ensure homogeneous strain and hardness distribution and fully nanostructure the alloy. Process limitations such as chevron cracks and shear bands were overcome by applying counter pressure for hydrostatic compression stress, enabling damage-free forming. Ageing of CMDS-TNZ leads to partial α''-martensite decomposition into finer structures of αs and β phase resulting in a microstructure with substructures smaller than 100 nm. NanoTNZ exhibits a Young's modulus of 92 GPa, an ultimate tensile strength of 981 MPa, and 8 % elongation at rupture. A bone plate of NanoTNZ was manufactured to demonstrate the efficacy of this continuous thermomechanical nanostructuring technique to produce next generation osteosynthesis implants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
期刊最新文献
Editorial Board Nanostructuring of the titanium alloy Ti-13Nb-13Zr (NanoTNZ) for osteosynthesis implants by continuous multidirectional swaging Influence of cooling lubricants on mechanical load at the cutting wedge using high-speed microcinematography and an open-contra rotation tribometer Analysis of root residual stress and total tooth profile deviation in hobbing and investigation of optimal parameters Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1