In-situ-assembled polyaniline frameworks on reduced graphene oxide toward high-performance energy-storage materials

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Synthetic Metals Pub Date : 2024-06-05 DOI:10.1016/j.synthmet.2024.117673
Aliaa M. Salem , Sayed Y. Attia , Amira Gaber , Saad G. Mohamed , Soliman I. El-Hout
{"title":"In-situ-assembled polyaniline frameworks on reduced graphene oxide toward high-performance energy-storage materials","authors":"Aliaa M. Salem ,&nbsp;Sayed Y. Attia ,&nbsp;Amira Gaber ,&nbsp;Saad G. Mohamed ,&nbsp;Soliman I. El-Hout","doi":"10.1016/j.synthmet.2024.117673","DOIUrl":null,"url":null,"abstract":"<div><p>PANI exhibited considerable potential in the conversion and storage of energy systems because of its high elasticity, large specific capacitance, multiple oxidation states, and relatively inexpensive. Unfortunately, PANI's poor stability restricts its usage. The coupling of PANI and other active materials has the potential to overcome PANI's inherent limitations. Here, we successfully synthesized reduced graphene oxide (rGO) that was utilized as a carbon substrate for in situ chemical polymerization of PANI at different operating temperatures [0°C, room temperature (RT), and 50°C]. The fabricated PANI-RT/rGO nanocomposite showed a high porosity with a high surface area, acting as an ions diffusion pathway. The estimated electrochemical results of the prepared electrodes, PANI-RT, PANI-50, PANI-0, and PANI-RT/rGO electrodes at an applied current of 2 A.g<sup>−1</sup> are 832 F.g<sup>−1</sup> (418 C/g), 256 F.g<sup>−1</sup> (128 C/g), and 224 F.g<sup>−1</sup> (112 C/g), and 1056 F.g<sup>−1</sup> (528 C/g), respectively. The capacitance of the PANI-RT/rGO electrode is much larger than that of the others, and rGO incorporation demonstrates a key factor in improving the electrochemical storage capability. Furthermore, the device is stable, keeping 90 % of its original capacity following 3 K charge/discharge repeated runs at 5 A g<sup>−1</sup>.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"307 ","pages":"Article 117673"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924001358","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

PANI exhibited considerable potential in the conversion and storage of energy systems because of its high elasticity, large specific capacitance, multiple oxidation states, and relatively inexpensive. Unfortunately, PANI's poor stability restricts its usage. The coupling of PANI and other active materials has the potential to overcome PANI's inherent limitations. Here, we successfully synthesized reduced graphene oxide (rGO) that was utilized as a carbon substrate for in situ chemical polymerization of PANI at different operating temperatures [0°C, room temperature (RT), and 50°C]. The fabricated PANI-RT/rGO nanocomposite showed a high porosity with a high surface area, acting as an ions diffusion pathway. The estimated electrochemical results of the prepared electrodes, PANI-RT, PANI-50, PANI-0, and PANI-RT/rGO electrodes at an applied current of 2 A.g−1 are 832 F.g−1 (418 C/g), 256 F.g−1 (128 C/g), and 224 F.g−1 (112 C/g), and 1056 F.g−1 (528 C/g), respectively. The capacitance of the PANI-RT/rGO electrode is much larger than that of the others, and rGO incorporation demonstrates a key factor in improving the electrochemical storage capability. Furthermore, the device is stable, keeping 90 % of its original capacity following 3 K charge/discharge repeated runs at 5 A g−1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在还原氧化石墨烯上原位组装聚苯胺框架,开发高性能储能材料
PANI 具有弹性高、比电容大、氧化态多和价格相对便宜等特点,在能源系统的转换和储存方面具有相当大的潜力。遗憾的是,PANI 的稳定性较差,限制了它的使用。PANI 与其他活性材料的耦合有望克服 PANI 固有的局限性。在这里,我们成功合成了还原氧化石墨烯(rGO),并将其用作碳基底,在不同的工作温度(0°C、室温(RT)和 50°C)下对 PANI 进行原位化学聚合。制备的 PANI-RT/rGO 纳米复合材料具有高孔隙率和高比表面积,是离子扩散的通道。在外加电流为 2 A.g-1 时,所制备的 PANI-RT、PANI-50、PANI-0 和 PANI-RT/rGO 电极的估计电化学结果分别为 832 F.g-1(418 C/g)、256 F.g-1(128 C/g)、224 F.g-1(112 C/g)和 1056 F.g-1(528 C/g)。PANI-RT/rGO 电极的电容远大于其他电极,rGO 的加入是提高电化学存储能力的关键因素。此外,该装置非常稳定,在 5 A g-1 下反复运行 3 K 充放电后,仍能保持 90% 的原始容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
期刊最新文献
Potentiostatic synthesis of polyaniline zinc and iron oxide composites for energy storage applications Hybrid nonfullerene acceptors based on thieno[2′,3′:4,5]thieno[3,2-b]indole for efficient organic solar cells Tuning molecular aggregation to enhance photovoltaic performance of polymers by isomerizing benzodithiophene moiety Para-azaquinodimethane-based quinoidal copolymers: Significant enhancement of electrochemical performances and stability with conformational planarity Modulation of Luttinger liquid behavior by multi-channel electron transport in aligned multi-walled carbon nanotube arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1