{"title":"Graphene and CNT-based hybrid nanocomposite and its application in electrochemical energy conversion and storage devices","authors":"Hafsa Shabbir , Muhammad Pervaiz , Rubab Shahzadi , Zohaib Saeed , Rana Rashad Mahmood Khan , Umer Younas","doi":"10.1016/j.synthmet.2025.117847","DOIUrl":null,"url":null,"abstract":"<div><div>The quest for advanced materials and innovative materials in energy storage and conversion has sparked interest in combining graphene and carbon nanotubes (CNTs), leveraging their strengths to create high-performance composites. This paper explores advanced methods in chemical vapor deposition (CVD) and hydrothermal techniques enhanced through specific modifications and meticulously adjusting synthesis parameters that refine the integration of graphene and CNT hybrid synthesis. The comprehensive overview of the hybrid application in energy conversion and storage is highlighted along with challenges and addressing the limitations for future research. The hybrid role is more advantageous strategically by putting research efforts on Dye-sensitized solar cell (DSSC) and Perovskite solar cell (PSC) than other solar cells as the material shows improved stability and reduced dependence on expensive pt in Dye-sensitized solar cell (DSSC). Also, the hybrid opens the way for commercialization and long-term stability of PSCs through innovations in hybrid electrode designs and interfacial engineering. A promising direction is also shown by the hybrid in improving various fuel cell performances such as Proton Exchange Membrane Fuel Cell (PEMFCs), Direct Methanol Fuel Cell (DMFCs), and Solid Oxide Fuel cell (SOFCs). In lithium-ion batteries, the hybrid design promotes ion mobility and increased cycling reliability.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117847"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677925000232","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quest for advanced materials and innovative materials in energy storage and conversion has sparked interest in combining graphene and carbon nanotubes (CNTs), leveraging their strengths to create high-performance composites. This paper explores advanced methods in chemical vapor deposition (CVD) and hydrothermal techniques enhanced through specific modifications and meticulously adjusting synthesis parameters that refine the integration of graphene and CNT hybrid synthesis. The comprehensive overview of the hybrid application in energy conversion and storage is highlighted along with challenges and addressing the limitations for future research. The hybrid role is more advantageous strategically by putting research efforts on Dye-sensitized solar cell (DSSC) and Perovskite solar cell (PSC) than other solar cells as the material shows improved stability and reduced dependence on expensive pt in Dye-sensitized solar cell (DSSC). Also, the hybrid opens the way for commercialization and long-term stability of PSCs through innovations in hybrid electrode designs and interfacial engineering. A promising direction is also shown by the hybrid in improving various fuel cell performances such as Proton Exchange Membrane Fuel Cell (PEMFCs), Direct Methanol Fuel Cell (DMFCs), and Solid Oxide Fuel cell (SOFCs). In lithium-ion batteries, the hybrid design promotes ion mobility and increased cycling reliability.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.