2SLS with multiple treatments

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-05-01 DOI:10.1016/j.jeconom.2024.105785
Manudeep Bhuller , Henrik Sigstad
{"title":"2SLS with multiple treatments","authors":"Manudeep Bhuller ,&nbsp;Henrik Sigstad","doi":"10.1016/j.jeconom.2024.105785","DOIUrl":null,"url":null,"abstract":"<div><p>We study what two-stage least squares (2SLS) identifies in models with multiple treatments under treatment effect heterogeneity. Two conditions are shown to be necessary and sufficient for the 2SLS to identify positively weighted sums of agent-specific effects of each treatment: <em>average conditional monotonicity</em> and <em>no cross effects</em>. Our identification analysis allows for any number of treatments, any number of continuous or discrete instruments, and the inclusion of covariates. We provide testable implications and present characterizations of choice behavior implied by our identification conditions.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"242 1","pages":"Article 105785"},"PeriodicalIF":9.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304407624001313/pdfft?md5=2731cd7dd32f64f1ed1eb1837a569f7d&pid=1-s2.0-S0304407624001313-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001313","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study what two-stage least squares (2SLS) identifies in models with multiple treatments under treatment effect heterogeneity. Two conditions are shown to be necessary and sufficient for the 2SLS to identify positively weighted sums of agent-specific effects of each treatment: average conditional monotonicity and no cross effects. Our identification analysis allows for any number of treatments, any number of continuous or discrete instruments, and the inclusion of covariates. We provide testable implications and present characterizations of choice behavior implied by our identification conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重处理的 2SLS
我们研究了在治疗效果异质性条件下,两阶段最小二乘法(2SLS)在具有多种治疗方法的模型中的识别能力。结果表明,有两个条件是 2SLS 识别出每种处理对特定代理人影响的正加权总和的必要条件和充分条件:平均条件单调性和无交叉效应。我们的识别分析允许任何数量的处理、任何数量的连续或离散工具以及协变量的加入。我们提供了可检验的含义,并介绍了我们的识别条件所隐含的选择行为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Inference in cluster randomized trials with matched pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1