Maximum likelihood estimation of a spatial autoregressive model for origin–destination flow variables

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-05-01 DOI:10.1016/j.jeconom.2024.105790
Hanbat Jeong , Lung-fei Lee
{"title":"Maximum likelihood estimation of a spatial autoregressive model for origin–destination flow variables","authors":"Hanbat Jeong ,&nbsp;Lung-fei Lee","doi":"10.1016/j.jeconom.2024.105790","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a spatial autoregressive hurdle model for nonnegative origin–destination flows <span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub></math></span>. The model incorporates a hurdle formulation to elucidate the different data-generating processes for zero and positive flows. Our model specifies three types of spatial influences on flow <span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub></math></span> that quantify the impact of third-party characteristics on the flow <span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub></math></span>: (i) the effect of outflows from origin <span><math><mi>j</mi></math></span>, (ii) the effect of inflows to destination <span><math><mi>i</mi></math></span>, and (iii) the effect of flows among third-party units. We account for two-way fixed effects in the model to capture the inherent characteristics of both origins and destinations. We employ maximum likelihood estimation to estimate the model parameters. To address statistical inference issues, we analyze the asymptotic properties of the ML estimator using the spatial near-epoch dependence concept. We confirm the presence of an asymptotic bias that arises from the fixed effects, whose dimensions grow with the sample size. Applying our model to migration flows among U.S. states, we estimate significant spatial influences, particularly from inflows to destinations and outflows from origins. Our findings support the notion that zero and positive flow formations are distinct. Consequently, our proposed model outperforms the spatial autoregressive Tobit specification for origin–destination flows, thus providing a better fit to the data.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"242 1","pages":"Article 105790"},"PeriodicalIF":9.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304407624001362/pdfft?md5=786f5e7638754e34b7724ba424cace3d&pid=1-s2.0-S0304407624001362-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001362","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a spatial autoregressive hurdle model for nonnegative origin–destination flows yN,ij. The model incorporates a hurdle formulation to elucidate the different data-generating processes for zero and positive flows. Our model specifies three types of spatial influences on flow yN,ij that quantify the impact of third-party characteristics on the flow yN,ij: (i) the effect of outflows from origin j, (ii) the effect of inflows to destination i, and (iii) the effect of flows among third-party units. We account for two-way fixed effects in the model to capture the inherent characteristics of both origins and destinations. We employ maximum likelihood estimation to estimate the model parameters. To address statistical inference issues, we analyze the asymptotic properties of the ML estimator using the spatial near-epoch dependence concept. We confirm the presence of an asymptotic bias that arises from the fixed effects, whose dimensions grow with the sample size. Applying our model to migration flows among U.S. states, we estimate significant spatial influences, particularly from inflows to destinations and outflows from origins. Our findings support the notion that zero and positive flow formations are distinct. Consequently, our proposed model outperforms the spatial autoregressive Tobit specification for origin–destination flows, thus providing a better fit to the data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
始发地-目的地流量变量空间自回归模型的最大似然估计
我们为非负数的始发地-目的地流量 yN,ij 引入了一个空间自回归障碍模型。该模型采用了阶跃公式,以阐明零流量和正流量的不同数据生成过程。我们的模型明确了对流量 yN,ij 的三种空间影响,量化了第三方特征对流量 yN,ij 的影响:(i) 从原产地 j 流出的影响,(ii) 流入目的地 i 的影响,(iii) 第三方单位之间流量的影响。我们在模型中考虑了双向固定效应,以反映原产地和目的地的固有特征。我们采用最大似然估计法来估计模型参数。为了解决统计推断问题,我们利用空间近表依赖概念分析了最大似然估计的渐近特性。我们证实了由固定效应引起的渐近偏差的存在,固定效应的维度随着样本量的增加而增加。将我们的模型应用于美国各州之间的移民流,我们估计了显著的空间影响,尤其是流入目的地和流出原籍地的影响。我们的研究结果支持了 "零流量 "和 "正流量 "是截然不同的这一观点。因此,我们提出的模型优于原籍-目的地流动的空间自回归 Tobit 规格,从而更好地拟合了数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1