{"title":"Bridging the Covid-19 data and the epidemiological model using the time-varying parameter SIRD model","authors":"Cem Çakmaklı , Yasin Şimşek","doi":"10.1016/j.jeconom.2024.105787","DOIUrl":null,"url":null,"abstract":"<div><p>This paper extends the canonical model of epidemiology, the SIRD model, to allow for time-varying parameters for real-time measurement and prediction of the trajectory of the Covid-19 pandemic. Time variation in model parameters is captured using the score-driven modeling structure designed for the typical daily count data related to the pandemic. The resulting specification permits a flexible yet parsimonious model with a low computational cost. The model is extended to allow for unreported cases using a mixed-frequency setting. Results suggest that these cases’ effects on the parameter estimates might be sizeable. Full sample results show that the flexible framework accurately captures the successive waves of the pandemic. A real-time exercise indicates that the proposed structure delivers timely and precise information on the pandemic’s current stance. This superior performance, in turn, transforms into accurate predictions of the death cases and cases treated in Intensive Care Units (ICUs).</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"242 1","pages":"Article 105787"},"PeriodicalIF":9.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001337","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper extends the canonical model of epidemiology, the SIRD model, to allow for time-varying parameters for real-time measurement and prediction of the trajectory of the Covid-19 pandemic. Time variation in model parameters is captured using the score-driven modeling structure designed for the typical daily count data related to the pandemic. The resulting specification permits a flexible yet parsimonious model with a low computational cost. The model is extended to allow for unreported cases using a mixed-frequency setting. Results suggest that these cases’ effects on the parameter estimates might be sizeable. Full sample results show that the flexible framework accurately captures the successive waves of the pandemic. A real-time exercise indicates that the proposed structure delivers timely and precise information on the pandemic’s current stance. This superior performance, in turn, transforms into accurate predictions of the death cases and cases treated in Intensive Care Units (ICUs).
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.