Xiaoying Cui , Lina Lv , Ke Zhao , Panpan Tian , Xipeng Chao , Ying Li , Baozhong Zhang
{"title":"Exo Ⅲ-assisted amplification signal strategy synergized with Au@Pt NFs/CoSe2 for sensitive detection of enrofloxacin","authors":"Xiaoying Cui , Lina Lv , Ke Zhao , Panpan Tian , Xipeng Chao , Ying Li , Baozhong Zhang","doi":"10.1016/j.bioelechem.2024.108750","DOIUrl":null,"url":null,"abstract":"<div><p>Overuse of enrofloxacin (ENR) has posed a potential threat to ecosystems and public health, so it is critical to sensitive and accurate determination of ENR residues. In this work, a novel ultra-sensitive and specific electrochemical aptasensor was fabricated based on the cobalt diselenide loaded gold and platinum nanoflowers (Au@Pt NFs/ CoSe<sub>2</sub>) and Exonuclease III (Exo III)-assisted cycle amplification strategy for the detection of ENR. Au@Pt NFs/ CoSe<sub>2</sub> nanosheets as the substrate material, with large surface area, accelerate electron transfer and attach more DNA probes on the electrode substrate, have effectively enhanced the electrochemical performance of the electrode. With the existence of Enrofloxacin (ENR), the aptamer recognizes and binds to ENR, thus the signal probe cDNA was released and immobilized onto the electrode surface to hybridized with methylene blue (MB) labelled DNA (MB-DNA), thereby triggering the Exo III-assisted cycle for further signal amplification. As expected, the prepared aptasensor demonstrated excellent sensitivity and selectivity, with a wide linear range from 5.0 × 10<sup>−6</sup> ng/mL to 1.0 × 10<sup>−2</sup> ng/mL for ENR, a low detection limit of 1.59 × 10<sup>−6</sup> ng/mL. Consequently, this strategy provided a promising avenue for ultrasensitive and accurate detection of ENR in milk samples.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"160 ","pages":"Article 108750"},"PeriodicalIF":4.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001129","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Overuse of enrofloxacin (ENR) has posed a potential threat to ecosystems and public health, so it is critical to sensitive and accurate determination of ENR residues. In this work, a novel ultra-sensitive and specific electrochemical aptasensor was fabricated based on the cobalt diselenide loaded gold and platinum nanoflowers (Au@Pt NFs/ CoSe2) and Exonuclease III (Exo III)-assisted cycle amplification strategy for the detection of ENR. Au@Pt NFs/ CoSe2 nanosheets as the substrate material, with large surface area, accelerate electron transfer and attach more DNA probes on the electrode substrate, have effectively enhanced the electrochemical performance of the electrode. With the existence of Enrofloxacin (ENR), the aptamer recognizes and binds to ENR, thus the signal probe cDNA was released and immobilized onto the electrode surface to hybridized with methylene blue (MB) labelled DNA (MB-DNA), thereby triggering the Exo III-assisted cycle for further signal amplification. As expected, the prepared aptasensor demonstrated excellent sensitivity and selectivity, with a wide linear range from 5.0 × 10−6 ng/mL to 1.0 × 10−2 ng/mL for ENR, a low detection limit of 1.59 × 10−6 ng/mL. Consequently, this strategy provided a promising avenue for ultrasensitive and accurate detection of ENR in milk samples.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.