Matthew Taper, Glenn Carrington, Michelle Peckham, Sean Lal, Robert D. Hume
{"title":"A comparison of fixation and immunofluorescence protocols for successful reproducibility and improved signal in human left ventricle cardiac tissue","authors":"Matthew Taper, Glenn Carrington, Michelle Peckham, Sean Lal, Robert D. Hume","doi":"10.1111/jmi.13336","DOIUrl":null,"url":null,"abstract":"<p>Immunohistochemistry (IHC) and immunofluorescence (IF) are crucial techniques for studying cardiac physiology and disease. The accuracy of these techniques is dependent on various aspects of sample preparation and processing. However, standardised protocols for sample preparation of tissues, particularly for fresh-frozen human left ventricle (LV) tissue, have yet to be established and could potentially lead to differences in staining and interpretation. Thus, this study aimed to optimise the reproducibility and quality of IF staining in fresh-frozen human LV tissue by systematically investigating crucial aspects of the sample preparation process. To achieve this, we subjected fresh-frozen human LV tissue to different fixation protocols, primary antibody incubation temperatures, antibody penetration reagents, and fluorescent probes. We found that neutral buffered formalin fixation reduced image artefacts and improved antibody specificity compared to both methanol and acetone fixation. Additionally, incubating primary antibodies at 37°C for 3 h improved fluorescence intensity compared to the commonly practised 4°C overnight incubation. Furthermore, we found that DeepLabel, an antibody penetration reagent, and smaller probes, such as fragmented antibodies and Affimers, improved the visualisation depth of cardiac structures. DeepLabel also improved antibody penetration in CUBIC cleared thick LV tissue fragments. Thus, our data underscores the importance of standardised protocols in IF staining and provides various means of improving staining quality. In addition to contributing to cardiac research by providing methodologies for IF, the findings and processes presented herein also establish a framework by which staining of other tissues may be optimised.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"296 1","pages":"34-47"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13336","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13336","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunohistochemistry (IHC) and immunofluorescence (IF) are crucial techniques for studying cardiac physiology and disease. The accuracy of these techniques is dependent on various aspects of sample preparation and processing. However, standardised protocols for sample preparation of tissues, particularly for fresh-frozen human left ventricle (LV) tissue, have yet to be established and could potentially lead to differences in staining and interpretation. Thus, this study aimed to optimise the reproducibility and quality of IF staining in fresh-frozen human LV tissue by systematically investigating crucial aspects of the sample preparation process. To achieve this, we subjected fresh-frozen human LV tissue to different fixation protocols, primary antibody incubation temperatures, antibody penetration reagents, and fluorescent probes. We found that neutral buffered formalin fixation reduced image artefacts and improved antibody specificity compared to both methanol and acetone fixation. Additionally, incubating primary antibodies at 37°C for 3 h improved fluorescence intensity compared to the commonly practised 4°C overnight incubation. Furthermore, we found that DeepLabel, an antibody penetration reagent, and smaller probes, such as fragmented antibodies and Affimers, improved the visualisation depth of cardiac structures. DeepLabel also improved antibody penetration in CUBIC cleared thick LV tissue fragments. Thus, our data underscores the importance of standardised protocols in IF staining and provides various means of improving staining quality. In addition to contributing to cardiac research by providing methodologies for IF, the findings and processes presented herein also establish a framework by which staining of other tissues may be optimised.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.