Adaptive information fusion network for multi-modal personality recognition

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Animation and Virtual Worlds Pub Date : 2024-06-10 DOI:10.1002/cav.2268
Yongtang Bao, Xiang Liu, Yue Qi, Ruijun Liu, Haojie Li
{"title":"Adaptive information fusion network for multi-modal personality recognition","authors":"Yongtang Bao,&nbsp;Xiang Liu,&nbsp;Yue Qi,&nbsp;Ruijun Liu,&nbsp;Haojie Li","doi":"10.1002/cav.2268","DOIUrl":null,"url":null,"abstract":"<p>Personality recognition is of great significance in deepening the understanding of social relations. While personality recognition methods have made significant strides in recent years, the challenge of heterogeneity between modalities during feature fusion still needs to be solved. This paper introduces an adaptive multi-modal information fusion network (AMIF-Net) capable of concurrently processing video, audio, and text data. First, utilizing the AMIF-Net encoder, we process the extracted audio and video features separately, effectively capturing long-term data relationships. Then, adding adaptive elements in the fusion network can alleviate the problem of heterogeneity between modes. Lastly, we concatenate audio-video and text features into a regression network to obtain Big Five personality trait scores. Furthermore, we introduce a novel loss function to address the problem of training inaccuracies, taking advantage of its unique property of exhibiting a peak at the critical mean. Our tests on the ChaLearn First Impressions V2 multi-modal dataset show partial performance surpassing state-of-the-art networks.</p>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.2268","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Personality recognition is of great significance in deepening the understanding of social relations. While personality recognition methods have made significant strides in recent years, the challenge of heterogeneity between modalities during feature fusion still needs to be solved. This paper introduces an adaptive multi-modal information fusion network (AMIF-Net) capable of concurrently processing video, audio, and text data. First, utilizing the AMIF-Net encoder, we process the extracted audio and video features separately, effectively capturing long-term data relationships. Then, adding adaptive elements in the fusion network can alleviate the problem of heterogeneity between modes. Lastly, we concatenate audio-video and text features into a regression network to obtain Big Five personality trait scores. Furthermore, we introduce a novel loss function to address the problem of training inaccuracies, taking advantage of its unique property of exhibiting a peak at the critical mean. Our tests on the ChaLearn First Impressions V2 multi-modal dataset show partial performance surpassing state-of-the-art networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多模态个性识别的自适应信息融合网络
人格识别对于加深对社会关系的理解具有重要意义。近年来,人格识别方法取得了长足进步,但特征融合过程中模态间的异质性仍是亟待解决的难题。本文介绍了一种能够同时处理视频、音频和文本数据的自适应多模态信息融合网络(AMIF-Net)。首先,我们利用 AMIF-Net 编码器分别处理提取的音频和视频特征,有效捕捉长期数据关系。然后,在融合网络中加入自适应元素,可以缓解不同模式之间的异质性问题。最后,我们将音频视频和文本特征整合到一个回归网络中,从而获得大五人格特质得分。此外,我们还引入了一种新的损失函数,利用其在临界均值处显示峰值的独特特性来解决训练不准确的问题。我们在 ChaLearn First Impressions V2 多模态数据集上进行的测试表明,其部分性能超过了最先进的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Animation and Virtual Worlds
Computer Animation and Virtual Worlds 工程技术-计算机:软件工程
CiteScore
2.20
自引率
0.00%
发文量
90
审稿时长
6-12 weeks
期刊介绍: With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.
期刊最新文献
A Facial Motion Retargeting Pipeline for Appearance Agnostic 3D Characters Enhancing Front-End Security: Protecting User Data and Privacy in Web Applications Virtual Roaming of Cultural Heritage Based on Image Processing PainterAR: A Self-Painting AR Interface for Mobile Devices Decoupled Edge Physics Algorithms for Collaborative XR Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1