Shock tube and kinetic modeling study on high-temperature ignition of ammonia blended with methyl hexanoate

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-06-10 DOI:10.1016/j.combustflame.2024.113555
Chong Li , Yangyang Luo , Haixin Deng , Zihao Zhou , Hongbo Ning , Yanlei Shang , Sheng-Nian Luo
{"title":"Shock tube and kinetic modeling study on high-temperature ignition of ammonia blended with methyl hexanoate","authors":"Chong Li ,&nbsp;Yangyang Luo ,&nbsp;Haixin Deng ,&nbsp;Zihao Zhou ,&nbsp;Hongbo Ning ,&nbsp;Yanlei Shang ,&nbsp;Sheng-Nian Luo","doi":"10.1016/j.combustflame.2024.113555","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) is a promising carbon-free and alternative fuel, but its applications are hindered by high auto-ignition temperature and low burning velocity. A common approach to overcome such drawbacks is to blend NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> with a high-reactivity fuel. In this study, a heated shock tube is employed to measure ignition delay time of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> blended with methyl hexanoate (MHX). The experiments are conducted at 6 atm, equivalence ratios of 0.5–2.0, temperatures of 1168–2115 K, and MHX blending ratios of 0, 20%, 50%, 70%, and 100%. Ignition delay time of the binary mixtures decreases monotonically with the addition of MHX. Compared with pure NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, the reactivity of the binary mixtures increases significantly with the addition of only 20% MHX, leading to a 10 times faster ignition delay time at around 1500 K and 6 atm. The reactivity of the fuel-lean and stoichiometric ratio mixtures is similar, and higher than the fuel-rich mixtures. The promotion effect of ignition delay time decreases with increasing blending ratio and pressure, and decreasing temperature. The influence of equivalence ratio on the promotion effect of ignition delay time is less significant than that of blending ratio, temperature and pressure. A detailed NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX kinetic model is developed by updating the interaction reactions between MHX and NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/NO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/NO radicals, and the NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and MHX sub-mechanism. The present kinetic model can reproduce satisfactorily the ignition delay time of pure MHX and NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and the NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX mixtures in the whole experimental conditions explored here. The kinetic analyses reveal that the interaction reactions between MHX and NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> radical have a significant impact on the ignition of the binary mixtures. Moreover, the important intermediate N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is more prone to forming N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> rather than NNH in the presence of MHX, different from the production of NNH in pure NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> combustion. The H-atom abstraction reaction, NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, H + NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> = NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> + H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, can proceed in the reverse direction with the addition of MHX, resulting in the production of more active H radicals that facilitate ignition.</p><p><strong>Novelty and significance statement:</strong></p><p>The practical utilization of pure ammonia (NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) as a fuel still faces several challenges and an effective method is the dual-fuel combustion strategy which involves blending low-reactivity NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> with a high-reactivity fuel. This work measures the new ignition delay time of methyl hexanoate (MHX) and NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX mixtures. A newly detailed NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/MHX kinetic model is also developed by updating the interaction reactions between MHX and NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/NO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/NO radicals, and the NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and MHX sub-mechanism. The kinetic analyses reveal that the interaction reactions between MHX and NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> radical have a significant impact on the ignition of the binary mixtures and the important intermediate N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is more likely to form N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> rather than NNH in the presence of MHX. To our best knowledge, this is the first study on the effect of methyl ester MHX addition on the ignition behavior of NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024002645","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia (NH3) is a promising carbon-free and alternative fuel, but its applications are hindered by high auto-ignition temperature and low burning velocity. A common approach to overcome such drawbacks is to blend NH3 with a high-reactivity fuel. In this study, a heated shock tube is employed to measure ignition delay time of NH3 blended with methyl hexanoate (MHX). The experiments are conducted at 6 atm, equivalence ratios of 0.5–2.0, temperatures of 1168–2115 K, and MHX blending ratios of 0, 20%, 50%, 70%, and 100%. Ignition delay time of the binary mixtures decreases monotonically with the addition of MHX. Compared with pure NH3, the reactivity of the binary mixtures increases significantly with the addition of only 20% MHX, leading to a 10 times faster ignition delay time at around 1500 K and 6 atm. The reactivity of the fuel-lean and stoichiometric ratio mixtures is similar, and higher than the fuel-rich mixtures. The promotion effect of ignition delay time decreases with increasing blending ratio and pressure, and decreasing temperature. The influence of equivalence ratio on the promotion effect of ignition delay time is less significant than that of blending ratio, temperature and pressure. A detailed NH3/MHX kinetic model is developed by updating the interaction reactions between MHX and NH2/NO2/NO radicals, and the NH3 and MHX sub-mechanism. The present kinetic model can reproduce satisfactorily the ignition delay time of pure MHX and NH3, and the NH3/MHX mixtures in the whole experimental conditions explored here. The kinetic analyses reveal that the interaction reactions between MHX and NH2 radical have a significant impact on the ignition of the binary mixtures. Moreover, the important intermediate N2H2 is more prone to forming N2H3 rather than NNH in the presence of MHX, different from the production of NNH in pure NH3 combustion. The H-atom abstraction reaction, NH3, H + NH3 = NH2 + H2, can proceed in the reverse direction with the addition of MHX, resulting in the production of more active H radicals that facilitate ignition.

Novelty and significance statement:

The practical utilization of pure ammonia (NH3) as a fuel still faces several challenges and an effective method is the dual-fuel combustion strategy which involves blending low-reactivity NH3 with a high-reactivity fuel. This work measures the new ignition delay time of methyl hexanoate (MHX) and NH3/MHX mixtures. A newly detailed NH3/MHX kinetic model is also developed by updating the interaction reactions between MHX and NH2/NO2/NO radicals, and the NH3 and MHX sub-mechanism. The kinetic analyses reveal that the interaction reactions between MHX and NH2 radical have a significant impact on the ignition of the binary mixtures and the important intermediate N2H2 is more likely to form N2H3 rather than NNH in the presence of MHX. To our best knowledge, this is the first study on the effect of methyl ester MHX addition on the ignition behavior of NH3.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氨与己酸甲酯混合高温点火的冲击管和动力学模型研究
氨气(NH3)是一种前景广阔的无碳替代燃料,但其应用却受到自燃温度高和燃烧速度低的阻碍。克服这些缺点的常用方法是将 NH3 与高活性燃料混合。本研究采用加热冲击管测量 NH3 与己酸甲酯(MHX)混合后的点火延迟时间。实验在 6 个大气压、当量比为 0.5-2.0、温度为 1168-2115 K 以及 MHX 混合比为 0、20%、50%、70% 和 100%的条件下进行。二元混合物的点火延迟时间随着 MHX 的加入而单调减少。与纯 NH3 相比,仅添加 20% 的 MHX,二元混合物的反应性就会显著增加,从而导致在 1500 K 和 6 atm 左右的点火延迟时间快 10 倍。燃料贫乏和化学计量比混合物的反应性相似,但高于燃料丰富的混合物。点火延迟时间的促进作用随着混合比和压力的增加以及温度的降低而减小。当量比对点火延迟时间的促进作用的影响不如掺混比、温度和压力的影响显著。通过更新 MHX 与 NH2/NO2/NO 自由基之间的相互作用反应以及 NH3 和 MHX 子机制,建立了详细的 NH3/MHX 动力学模型。本动力学模型能在整个实验条件下令人满意地再现纯 MHX 和 NH3 以及 NH3/MHX 混合物的点火延迟时间。动力学分析表明,MHX 和 NH2 自由基之间的相互作用反应对二元混合物的点火有重要影响。此外,重要的中间产物 N2H2 在 MHX 的存在下更容易生成 N2H3 而不是 NNH,这与纯 NH3 燃烧中生成 NNH 的情况不同。H 原子抽取反应 NH3, H + NH3 = NH2 + H2,在加入 MHX 后可反向进行,从而产生更活跃的 H 自由基,促进点火。新颖性及意义声明:纯氨(NH3)作为燃料的实际利用仍面临一些挑战,而双燃料燃烧策略是一种有效的方法,它涉及将低活性 NH3 与高活性燃料混合。这项研究测量了己酸甲酯(MHX)和 NH3/MHX 混合物的新点火延迟时间。通过更新 MHX 和 NH2/NO2/NO 自由基之间的相互作用反应以及 NH3 和 MHX 子机制,还建立了一个新的详细的 NH3/MHX 动力学模型。动力学分析表明,MHX 和 NH2 自由基之间的相互作用反应对二元混合物的点火有重大影响,重要的中间产物 N2H2 在 MHX 的存在下更有可能形成 N2H3 而不是 NNH。据我们所知,这是首次研究添加甲酯 MHX 对 NH3 点火行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Mechanical and combustion properties of fluoroalkylsilane surface-functionalized boron/HTPB composite Theoretical insights into transient gas and liquid phase effects on the evaporation and autoignition of stationary droplets A well-defined methodology to extract laminar flame speeds at engine-relevant conditions Numerical investigation of sweeping jet actuator on oblique detonation Understanding the synergistic effect in green propellants 2-azido-N,N-dimethylethanamine and tetramethylethylenediamine: From drop test to gas-phase autoignition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1