Binod Paudel , Jeffrey A. Dhas , Yadong Zhou , Min-Ju Choi , David J. Senor , Chih-Hung Chang , Yingge Du , Zihua Zhu
{"title":"ToF-SIMS in material research: A view from nanoscale hydrogen detection","authors":"Binod Paudel , Jeffrey A. Dhas , Yadong Zhou , Min-Ju Choi , David J. Senor , Chih-Hung Chang , Yingge Du , Zihua Zhu","doi":"10.1016/j.mattod.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen in materials has attracted tremendous interest as its incorporation leads to significant alterations in nanoscale structure, composition, and chemistry, impacting functional properties. It has also been integral to nuclear fusion reactors and is considered a future clean energy source. However, nanoscale characterization and manipulation of hydrogen in materials are challenging as only a selected few analytical techniques can readily detect hydrogen, among which time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a unique and powerful one due to its excellent detection limit along with decent depth and lateral resolutions. In this review, we discuss, using selected examples, how to detect and quantify hydrogen in materials by ToF-SIMS and its impact on revealing the hydrogenation/protonation-induced novel functional states in different classes of materials. In addition, we present our protocols on sample preparation and experimental conditions optimization, allowing us to achieve the best possible results. Finally, we highlight future research directions that can lead to the discovery of novel functional states and ultimately provide a deeper understanding of scientific questions in materials science.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 149-165"},"PeriodicalIF":21.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000336","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen in materials has attracted tremendous interest as its incorporation leads to significant alterations in nanoscale structure, composition, and chemistry, impacting functional properties. It has also been integral to nuclear fusion reactors and is considered a future clean energy source. However, nanoscale characterization and manipulation of hydrogen in materials are challenging as only a selected few analytical techniques can readily detect hydrogen, among which time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a unique and powerful one due to its excellent detection limit along with decent depth and lateral resolutions. In this review, we discuss, using selected examples, how to detect and quantify hydrogen in materials by ToF-SIMS and its impact on revealing the hydrogenation/protonation-induced novel functional states in different classes of materials. In addition, we present our protocols on sample preparation and experimental conditions optimization, allowing us to achieve the best possible results. Finally, we highlight future research directions that can lead to the discovery of novel functional states and ultimately provide a deeper understanding of scientific questions in materials science.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.