{"title":"Porous materials MOFs and COFs: Energy-saving adsorbents for atmospheric water harvesting","authors":"","doi":"10.1016/j.mattod.2024.06.012","DOIUrl":null,"url":null,"abstract":"<div><p><span>Atmospheric water harvesting (AWH) that extact water from air is adorable technology which can release water stress in arid regions decentralized, however right now the high energy consumption hinders its development especially in low humidity condition. Improving humidity by adsorbing water through porous materials is an effective way to reduce AWH energy consumption. Metal organic frameworks (MOFs) and </span>covalent organic frameworks (COFs), as a representative of new designable porous materials, is expected to solve the energy consumption problem in the practical application process of AWH. This review elucidates the energy-saving effects and design objectives of MOFs and COFs by analyzing the impact of adsorbents on energy consumption. Additionally, the manuscript delves into the principles of water adsorption in MOFs and COFs, subsequently reviewing the design methods for materials optimized for AWH performance. Lastly, the manuscript outlines the primary challenges and development recommendations for future energy-saving AWH solutions in arid regions.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":null,"pages":null},"PeriodicalIF":21.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001147","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric water harvesting (AWH) that extact water from air is adorable technology which can release water stress in arid regions decentralized, however right now the high energy consumption hinders its development especially in low humidity condition. Improving humidity by adsorbing water through porous materials is an effective way to reduce AWH energy consumption. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs), as a representative of new designable porous materials, is expected to solve the energy consumption problem in the practical application process of AWH. This review elucidates the energy-saving effects and design objectives of MOFs and COFs by analyzing the impact of adsorbents on energy consumption. Additionally, the manuscript delves into the principles of water adsorption in MOFs and COFs, subsequently reviewing the design methods for materials optimized for AWH performance. Lastly, the manuscript outlines the primary challenges and development recommendations for future energy-saving AWH solutions in arid regions.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.