{"title":"Efficient selenium use by PRDX6 suppresses iron toxicity and ferroptosis","authors":"","doi":"10.1038/s41594-024-01330-6","DOIUrl":null,"url":null,"abstract":"An iron-induced ferroptosis screen revealed PRDX6 as a selenoprotein-synthesis factor. Loss of PRDX6 substantially decreased expression of the selenoprotein GPX4, a master regulator of ferroptosis, and induced ferroptosis. Mechanistically, PRDX6 increases the efficiency of selenium use by acting as a selenium delivery protein.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 8","pages":"1154-1155"},"PeriodicalIF":12.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01330-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An iron-induced ferroptosis screen revealed PRDX6 as a selenoprotein-synthesis factor. Loss of PRDX6 substantially decreased expression of the selenoprotein GPX4, a master regulator of ferroptosis, and induced ferroptosis. Mechanistically, PRDX6 increases the efficiency of selenium use by acting as a selenium delivery protein.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.