A comparison of random forest-based missing imputation methods for covariates in propensity score analysis.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2024-06-13 DOI:10.1037/met0000676
Yongseok Lee, Walter L Leite
{"title":"A comparison of random forest-based missing imputation methods for covariates in propensity score analysis.","authors":"Yongseok Lee, Walter L Leite","doi":"10.1037/met0000676","DOIUrl":null,"url":null,"abstract":"<p><p>Propensity score analysis (PSA) is a prominent method to alleviate selection bias in observational studies, but missing data in covariates is prevalent and must be dealt with during propensity score estimation. Through Monte Carlo simulations, this study evaluates the use of imputation methods based on multiple random forests algorithms to handle missing data in covariates: multivariate imputation by chained equations-random forest (Caliber), proximity imputation (PI), and missForest. The results indicated that PI and missForest outperformed other methods with respect to bias of average treatment effect regardless of sample size and missing mechanisms. A demonstration of these five methods with PSA to evaluate the effect of participation in center-based care on children's reading ability is provided using data from the Early Childhood Longitudinal Study, Kindergarten Class of 2010-2011. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000676","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Propensity score analysis (PSA) is a prominent method to alleviate selection bias in observational studies, but missing data in covariates is prevalent and must be dealt with during propensity score estimation. Through Monte Carlo simulations, this study evaluates the use of imputation methods based on multiple random forests algorithms to handle missing data in covariates: multivariate imputation by chained equations-random forest (Caliber), proximity imputation (PI), and missForest. The results indicated that PI and missForest outperformed other methods with respect to bias of average treatment effect regardless of sample size and missing mechanisms. A demonstration of these five methods with PSA to evaluate the effect of participation in center-based care on children's reading ability is provided using data from the Early Childhood Longitudinal Study, Kindergarten Class of 2010-2011. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较倾向评分分析中基于随机森林的协变量缺失估算方法。
倾向评分分析(PSA)是减轻观察性研究中选择偏倚的一种重要方法,但共变因素中的缺失数据非常普遍,必须在倾向评分估算过程中加以处理。本研究通过蒙特卡罗模拟,评估了使用基于多种随机森林算法的估算方法来处理协变量缺失数据的情况:链式方程-随机森林多变量估算(Caliber)、近似估算(PI)和 missForest。结果表明,无论样本大小和缺失机制如何,PI 和 missForest 在平均治疗效果的偏差方面都优于其他方法。本文利用 2010--2011 年幼儿园班级幼儿纵向研究的数据,展示了这五种方法与 PSA 在评估参与中心保育对儿童阅读能力的影响方面的应用。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
A guided tutorial on linear mixed-effects models for the analysis of accuracies and response times in experiments with fully crossed design. Bayes factors for logistic (mixed-effect) models. Better power by design: Permuted-subblock randomization boosts power in repeated-measures experiments. Building a simpler moderated nonlinear factor analysis model with Markov Chain Monte Carlo estimation. Definition and identification of causal ratio effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1