Nurfatini Radzlin, Mohd Shukuri Mohamad Ali, Kian Mau Goh, Amira Suriaty Yaakop, Iffah Izzati Zakaria, Ummirul Mukminin Kahar
{"title":"Exploring a novel GH13_5 α-amylase from Jeotgalibacillus malaysiensis D5<sup>T</sup> for raw starch hydrolysis.","authors":"Nurfatini Radzlin, Mohd Shukuri Mohamad Ali, Kian Mau Goh, Amira Suriaty Yaakop, Iffah Izzati Zakaria, Ummirul Mukminin Kahar","doi":"10.1186/s13568-024-01722-3","DOIUrl":null,"url":null,"abstract":"<p><p>α-Amylase plays a crucial role in the industrial degradation of starch. The genus Jeotgalibacillus of the underexplored marine bacteria family Caryophanaceae has not been investigated in terms of α-amylase production. Herein, we report the comprehensive analysis of an α-amylase (AmyJM) from Jeotgalibacillus malaysiensis D5<sup>T</sup> (= DSM28777<sup>T</sup> = KCTC33550<sup>T</sup>). Protein phylogenetic analysis indicated that AmyJM belongs to glycoside hydrolase family 13 subfamily 5 (GH13_5) and exhibits low sequence identity with known α-amylases, with its closest counterpart being the GH13_5 α-amylase from Bacillus sp. KSM-K38 (51.05% identity). Purified AmyJM (molecular mass of 70 kDa) is stable at a pH range of 5.5-9.0 and optimally active at pH 7.5. The optimum temperature for AmyJM is 40 °C, where the enzyme is reasonably stable at this temperature. Similar to other α-amylases, the presence of CaCl<sub>2</sub> enhanced both the activity and stability of AmyJM. AmyJM exhibited activity toward raw and gelatinized forms of starches and related α-glucans, generating a mixture of reducing sugars, such as glucose, maltose, maltotriose, maltotetraose, and maltopentaose. In raw starch hydrolysis, AmyJM exhibited its highest efficiency (51.10% degradation) in hydrolyzing raw wheat starch after 3-h incubation at 40 °C. Under the same conditions, AmyJM also hydrolyzed tapioca, sago, potato, rice, and corn raw starches, yielding 16.01-30.05%. These findings highlight the potential of AmyJM as a biocatalyst for the saccharification of raw starches, particularly those derived from wheat.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01722-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
α-Amylase plays a crucial role in the industrial degradation of starch. The genus Jeotgalibacillus of the underexplored marine bacteria family Caryophanaceae has not been investigated in terms of α-amylase production. Herein, we report the comprehensive analysis of an α-amylase (AmyJM) from Jeotgalibacillus malaysiensis D5T (= DSM28777T = KCTC33550T). Protein phylogenetic analysis indicated that AmyJM belongs to glycoside hydrolase family 13 subfamily 5 (GH13_5) and exhibits low sequence identity with known α-amylases, with its closest counterpart being the GH13_5 α-amylase from Bacillus sp. KSM-K38 (51.05% identity). Purified AmyJM (molecular mass of 70 kDa) is stable at a pH range of 5.5-9.0 and optimally active at pH 7.5. The optimum temperature for AmyJM is 40 °C, where the enzyme is reasonably stable at this temperature. Similar to other α-amylases, the presence of CaCl2 enhanced both the activity and stability of AmyJM. AmyJM exhibited activity toward raw and gelatinized forms of starches and related α-glucans, generating a mixture of reducing sugars, such as glucose, maltose, maltotriose, maltotetraose, and maltopentaose. In raw starch hydrolysis, AmyJM exhibited its highest efficiency (51.10% degradation) in hydrolyzing raw wheat starch after 3-h incubation at 40 °C. Under the same conditions, AmyJM also hydrolyzed tapioca, sago, potato, rice, and corn raw starches, yielding 16.01-30.05%. These findings highlight the potential of AmyJM as a biocatalyst for the saccharification of raw starches, particularly those derived from wheat.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.