Maridee Weber, Marshall Wise, Patrick Lamers, Yong Wang, Greg Avery, Kendalynn A. Morris, Jae Edmonds
{"title":"Potential long-term, global effects of enhancing the domestic terrestrial carbon sink in the United States through no-till and cover cropping","authors":"Maridee Weber, Marshall Wise, Patrick Lamers, Yong Wang, Greg Avery, Kendalynn A. Morris, Jae Edmonds","doi":"10.1186/s13021-024-00256-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Achieving a net zero greenhouse gas United States (US) economy is likely to require both deep sectoral mitigation and additional carbon dioxide removals to offset hard-to-abate emissions. Enhancing the terrestrial carbon sink, through practices such as the adoption of no-till and cover cropping agricultural management, could provide a portion of these required offsets. Changing domestic agricultural practices to optimize carbon content, however, might reduce or shift US agricultural commodity outputs and exports, with potential implications on respective global markets and land use patterns. Here, we use an integrated energy-economy-land-climate model to comprehensively assess the global land, trade, and emissions impacts of an adoption of domestic no-till farming and cover cropping practices based on carbon pricing.</p><h3>Results</h3><p>We find that the adoption of these practices varies depending on which aspects of terrestrial carbon are valued. Valuation of all terrestrial carbon resulted in afforestation at the expense of domestic agricultural production. In contrast, a policy valuing soil carbon in agricultural systems specifically indicates strong adoption of no-till and cover cropping for key crops.</p><h3>Conclusions</h3><p>We conclude that under targeted terrestrial carbon incentives, adoption of no-till and cover cropping practices in the US could increase the terrestrial carbon sink with limited effects on crop availability for food and fodder markets. Future work should consider integrated assessment modeling of non-CO<sub>2</sub> greenhouse gas impacts, above ground carbon storage changes, and capital and operating cost considerations.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00256-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00256-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Achieving a net zero greenhouse gas United States (US) economy is likely to require both deep sectoral mitigation and additional carbon dioxide removals to offset hard-to-abate emissions. Enhancing the terrestrial carbon sink, through practices such as the adoption of no-till and cover cropping agricultural management, could provide a portion of these required offsets. Changing domestic agricultural practices to optimize carbon content, however, might reduce or shift US agricultural commodity outputs and exports, with potential implications on respective global markets and land use patterns. Here, we use an integrated energy-economy-land-climate model to comprehensively assess the global land, trade, and emissions impacts of an adoption of domestic no-till farming and cover cropping practices based on carbon pricing.
Results
We find that the adoption of these practices varies depending on which aspects of terrestrial carbon are valued. Valuation of all terrestrial carbon resulted in afforestation at the expense of domestic agricultural production. In contrast, a policy valuing soil carbon in agricultural systems specifically indicates strong adoption of no-till and cover cropping for key crops.
Conclusions
We conclude that under targeted terrestrial carbon incentives, adoption of no-till and cover cropping practices in the US could increase the terrestrial carbon sink with limited effects on crop availability for food and fodder markets. Future work should consider integrated assessment modeling of non-CO2 greenhouse gas impacts, above ground carbon storage changes, and capital and operating cost considerations.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.