A Comparison of Personalized and Generalized Approaches to Emotion Recognition Using Consumer Wearable Devices: Machine Learning Study.

JMIR AI Pub Date : 2024-05-10 DOI:10.2196/52171
Joe Li, Peter Washington
{"title":"A Comparison of Personalized and Generalized Approaches to Emotion Recognition Using Consumer Wearable Devices: Machine Learning Study.","authors":"Joe Li, Peter Washington","doi":"10.2196/52171","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There are a wide range of potential adverse health effects, ranging from headaches to cardiovascular disease, associated with long-term negative emotions and chronic stress. Because many indicators of stress are imperceptible to observers, the early detection of stress remains a pressing medical need, as it can enable early intervention. Physiological signals offer a noninvasive method for monitoring affective states and are recorded by a growing number of commercially available wearables.</p><p><strong>Objective: </strong>We aim to study the differences between personalized and generalized machine learning models for 3-class emotion classification (neutral, stress, and amusement) using wearable biosignal data.</p><p><strong>Methods: </strong>We developed a neural network for the 3-class emotion classification problem using data from the Wearable Stress and Affect Detection (WESAD) data set, a multimodal data set with physiological signals from 15 participants. We compared the results between a participant-exclusive generalized, a participant-inclusive generalized, and a personalized deep learning model.</p><p><strong>Results: </strong>For the 3-class classification problem, our personalized model achieved an average accuracy of 95.06% and an F<sub>1</sub>-score of 91.71%; our participant-inclusive generalized model achieved an average accuracy of 66.95% and an F<sub>1</sub>-score of 42.50%; and our participant-exclusive generalized model achieved an average accuracy of 67.65% and an F<sub>1</sub>-score of 43.05%.</p><p><strong>Conclusions: </strong>Our results emphasize the need for increased research in personalized emotion recognition models given that they outperform generalized models in certain contexts. We also demonstrate that personalized machine learning models for emotion classification are viable and can achieve high performance.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"3 ","pages":"e52171"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/52171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There are a wide range of potential adverse health effects, ranging from headaches to cardiovascular disease, associated with long-term negative emotions and chronic stress. Because many indicators of stress are imperceptible to observers, the early detection of stress remains a pressing medical need, as it can enable early intervention. Physiological signals offer a noninvasive method for monitoring affective states and are recorded by a growing number of commercially available wearables.

Objective: We aim to study the differences between personalized and generalized machine learning models for 3-class emotion classification (neutral, stress, and amusement) using wearable biosignal data.

Methods: We developed a neural network for the 3-class emotion classification problem using data from the Wearable Stress and Affect Detection (WESAD) data set, a multimodal data set with physiological signals from 15 participants. We compared the results between a participant-exclusive generalized, a participant-inclusive generalized, and a personalized deep learning model.

Results: For the 3-class classification problem, our personalized model achieved an average accuracy of 95.06% and an F1-score of 91.71%; our participant-inclusive generalized model achieved an average accuracy of 66.95% and an F1-score of 42.50%; and our participant-exclusive generalized model achieved an average accuracy of 67.65% and an F1-score of 43.05%.

Conclusions: Our results emphasize the need for increased research in personalized emotion recognition models given that they outperform generalized models in certain contexts. We also demonstrate that personalized machine learning models for emotion classification are viable and can achieve high performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用消费类可穿戴设备进行情感识别的个性化和通用化方法比较:机器学习研究。
背景:长期的消极情绪和慢性压力会对健康产生广泛的潜在不利影响,从头痛到心血管疾病不等。由于许多压力指标是观察者无法察觉的,因此压力的早期检测仍然是一项迫切的医疗需求,因为它可以实现早期干预。生理信号为监测情绪状态提供了一种无创方法,越来越多的商用可穿戴设备都能记录生理信号:我们旨在利用可穿戴生物信号数据,研究个性化和通用化机器学习模型在三类情绪分类(中性、压力和娱乐)中的差异:我们利用可穿戴压力和情感检测(WESAD)数据集(一个包含 15 名参与者生理信号的多模态数据集)中的数据,为 3 类情感分类问题开发了一个神经网络。我们比较了参与者专属广义模型、参与者专属广义模型和个性化深度学习模型的结果:结果:在三类分类问题上,我们的个性化模型取得了 95.06% 的平均准确率和 91.71% 的 F1 分数;我们的参与者包容性广义模型取得了 66.95% 的平均准确率和 42.50% 的 F1 分数;我们的参与者排他性广义模型取得了 67.65% 的平均准确率和 43.05% 的 F1 分数:我们的研究结果强调了加强个性化情感识别模型研究的必要性,因为在某些情况下,个性化情感识别模型的表现优于通用模型。我们还证明了用于情感分类的个性化机器学习模型是可行的,并且可以实现高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ensuring Appropriate Representation in Artificial Intelligence-Generated Medical Imagery: Protocol for a Methodological Approach to Address Skin Tone Bias. How Explainable Artificial Intelligence Can Increase or Decrease Clinicians' Trust in AI Applications in Health Care: Systematic Review. Targeting COVID-19 and Human Resources for Health News Information Extraction: Algorithm Development and Validation. Understanding AI's Role in Endometriosis Patient Education and Evaluating Its Information and Accuracy: Systematic Review. Identifying Marijuana Use Behaviors Among Youth Experiencing Homelessness Using a Machine Learning-Based Framework: Development and Evaluation Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1