Ananya Choudhury, Leroy Volmer, Frank Martin, Rianne Fijten, Leonard Wee, Andre Dekker, Johan van Soest
{"title":"Advancing Privacy-Preserving Health Care Analytics and Implementation of the Personal Health Train: Federated Deep Learning Study.","authors":"Ananya Choudhury, Leroy Volmer, Frank Martin, Rianne Fijten, Leonard Wee, Andre Dekker, Johan van Soest","doi":"10.2196/60847","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rapid advancement of deep learning in health care presents significant opportunities for automating complex medical tasks and improving clinical workflows. However, widespread adoption is impeded by data privacy concerns and the necessity for large, diverse datasets across multiple institutions. Federated learning (FL) has emerged as a viable solution, enabling collaborative artificial intelligence model development without sharing individual patient data. To effectively implement FL in health care, robust and secure infrastructures are essential. Developing such federated deep learning frameworks is crucial to harnessing the full potential of artificial intelligence while ensuring patient data privacy and regulatory compliance.</p><p><strong>Objective: </strong>The objective is to introduce an innovative FL infrastructure called the Personal Health Train (PHT) that includes the procedural, technical, and governance components needed to implement FL on real-world health care data, including training deep learning neural networks. The study aims to apply this federated deep learning infrastructure to the use case of gross tumor volume segmentation on chest computed tomography images of patients with lung cancer and present the results from a proof-of-concept experiment.</p><p><strong>Methods: </strong>The PHT framework addresses the challenges of data privacy when sharing data, by keeping data close to the source and instead bringing the analysis to the data. Technologically, PHT requires 3 interdependent components: \"tracks\" (protected communication channels), \"trains\" (containerized software apps), and \"stations\" (institutional data repositories), which are supported by the open source \"Vantage6\" software. The study applies this federated deep learning infrastructure to the use case of gross tumor volume segmentation on chest computed tomography images of patients with lung cancer, with the introduction of an additional component called the secure aggregation server, where the model averaging is done in a trusted and inaccessible environment.</p><p><strong>Results: </strong>We demonstrated the feasibility of executing deep learning algorithms in a federated manner using PHT and presented the results from a proof-of-concept study. The infrastructure linked 12 hospitals across 8 nations, covering 4 continents, demonstrating the scalability and global reach of the proposed approach. During the execution and training of the deep learning algorithm, no data were shared outside the hospital.</p><p><strong>Conclusions: </strong>The findings of the proof-of-concept study, as well as the implications and limitations of the infrastructure and the results, are discussed. The application of federated deep learning to unstructured medical imaging data, facilitated by the PHT framework and Vantage6 platform, represents a significant advancement in the field. The proposed infrastructure addresses the challenges of data privacy and enables collaborative model development, paving the way for the widespread adoption of deep learning-based tools in the medical domain and beyond. The introduction of the secure aggregation server implied that data leakage problems in FL can be prevented by careful design decisions of the infrastructure.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov NCT05775068; https://clinicaltrials.gov/study/NCT05775068.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"4 ","pages":"e60847"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/60847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The rapid advancement of deep learning in health care presents significant opportunities for automating complex medical tasks and improving clinical workflows. However, widespread adoption is impeded by data privacy concerns and the necessity for large, diverse datasets across multiple institutions. Federated learning (FL) has emerged as a viable solution, enabling collaborative artificial intelligence model development without sharing individual patient data. To effectively implement FL in health care, robust and secure infrastructures are essential. Developing such federated deep learning frameworks is crucial to harnessing the full potential of artificial intelligence while ensuring patient data privacy and regulatory compliance.
Objective: The objective is to introduce an innovative FL infrastructure called the Personal Health Train (PHT) that includes the procedural, technical, and governance components needed to implement FL on real-world health care data, including training deep learning neural networks. The study aims to apply this federated deep learning infrastructure to the use case of gross tumor volume segmentation on chest computed tomography images of patients with lung cancer and present the results from a proof-of-concept experiment.
Methods: The PHT framework addresses the challenges of data privacy when sharing data, by keeping data close to the source and instead bringing the analysis to the data. Technologically, PHT requires 3 interdependent components: "tracks" (protected communication channels), "trains" (containerized software apps), and "stations" (institutional data repositories), which are supported by the open source "Vantage6" software. The study applies this federated deep learning infrastructure to the use case of gross tumor volume segmentation on chest computed tomography images of patients with lung cancer, with the introduction of an additional component called the secure aggregation server, where the model averaging is done in a trusted and inaccessible environment.
Results: We demonstrated the feasibility of executing deep learning algorithms in a federated manner using PHT and presented the results from a proof-of-concept study. The infrastructure linked 12 hospitals across 8 nations, covering 4 continents, demonstrating the scalability and global reach of the proposed approach. During the execution and training of the deep learning algorithm, no data were shared outside the hospital.
Conclusions: The findings of the proof-of-concept study, as well as the implications and limitations of the infrastructure and the results, are discussed. The application of federated deep learning to unstructured medical imaging data, facilitated by the PHT framework and Vantage6 platform, represents a significant advancement in the field. The proposed infrastructure addresses the challenges of data privacy and enables collaborative model development, paving the way for the widespread adoption of deep learning-based tools in the medical domain and beyond. The introduction of the secure aggregation server implied that data leakage problems in FL can be prevented by careful design decisions of the infrastructure.