Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care. For example, an echocardiogram is a type of laboratory test that is extremely important and not easily accessible. The increasing demand for echocardiograms underscores the imperative for more efficient scheduling protocols. Despite this pressing need, limited research has been conducted in this area.
Objective: The study aims to develop an interpretable machine learning model for determining the urgency of patients requiring echocardiograms, thereby aiding in the prioritization of scheduling procedures. Furthermore, this study aims to glean insights into the pivotal attributes influencing the prioritization of echocardiogram appointments, leveraging the high interpretability of the machine learning model.
Methods: Empirical and predictive analyses have been conducted to assess the urgency of patients based on a large real-world echocardiogram appointment dataset (ie, 34,293 appointments) sourced from electronic health records encompassing administrative information, referral diagnosis, and underlying patient conditions. We used a state-of-the-art interpretable machine learning algorithm, the optimal sparse decision tree (OSDT), renowned for its high accuracy and interpretability, to investigate the attributes pertinent to echocardiogram appointments.
Results: The method demonstrated satisfactory performance (F1-score=36.18% with an improvement of 1.7% and F2-score=28.18% with an improvement of 0.79% by the best-performing baseline model) in comparison to the best-performing baseline model. Moreover, due to its high interpretability, the results provide valuable medical insights regarding the identification of urgent patients for tests through the extraction of decision rules from the OSDT model.
Conclusions: The method demonstrated state-of-the-art predictive performance, affirming its effectiveness. Furthermore, we validate the decision rules derived from the OSDT model by comparing them with established medical knowledge. These interpretable results (eg, attribute importance and decision rules from the OSDT model) underscore the potential of our approach in prioritizing patient urgency for echocardiogram appointments and can be extended to prioritize other laboratory test appointments using electronic health record data.
Background: Conversational agents (CAs) are finding increasing application in health and social care, not least due to their growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.
Objective: The aim of our study was to identify the use cases, user groups, and settings of smart speakers in health and social care. We also wanted to identify the key motivations for developers and designers to use this particular type of technology.
Methods: We conducted a scoping review to provide an overview of the literature on smart speakers in health and social care. The literature search was conducted between February 2023 and March 2023 and included 3 databases (PubMed, Scopus, and Sociological Abstracts), supplemented by Google Scholar. Several keywords were used, including technology (eg, voice assistant), product name (eg, Amazon Alexa), and setting (health care or social care). Publications were included if they met the predefined inclusion criteria: (1) published after 2015 and (2) used a smart speaker in a health care or social care setting. Publications were excluded if they met one of the following criteria: (1) did not report on the specific devices used, (2) did not focus specifically on smart speakers, (3) were systematic reviews and other forms of literature-based publications, and (4) were not published in English. Two reviewers collected, reviewed, abstracted, and analyzed the data using qualitative content analysis.
Results: A total of 27 articles were included in the final review. These articles covered a wide range of use cases in different settings, such as private homes, hospitals, long-term care facilities, and outpatient services. The main target group was patients, especially older users, followed by doctors and other medical staff members.
Conclusions: The results show that smart speakers have diverse applications in health and social care, addressing different contexts and audiences. Their affordability and easy-to-use interfaces make them attractive to various stakeholders. It seems likely that, due to technical advances in artificial intelligence and the market power of the companies behind the devices, there will be more use cases for smart speakers in the near future.
Background: Acute marijuana intoxication can impair motor skills and cognitive functions such as attention and information processing. However, traditional tests, like blood, urine, and saliva, fail to accurately detect acute marijuana intoxication in real time.
Objective: This study aims to explore whether integrating smartphone-based sensors with readily accessible wearable activity trackers, like Fitbit, can enhance the detection of acute marijuana intoxication in naturalistic settings. No previous research has investigated the effectiveness of passive sensing technologies for enhancing algorithm accuracy or enhancing the interpretability of digital phenotyping through explainable artificial intelligence in real-life scenarios. This approach aims to provide insights into how individuals interact with digital devices during algorithmic decision-making, particularly for detecting moderate to intensive marijuana intoxication in real-world contexts.
Methods: Sensor data from smartphones and Fitbits, along with self-reported marijuana use, were collected from 33 young adults over a 30-day period using the experience sampling method. Participants rated their level of intoxication on a scale from 1 to 10 within 15 minutes of consuming marijuana and during 3 daily semirandom prompts. The ratings were categorized as not intoxicated (0), low (1-3), and moderate to intense intoxication (4-10). The study analyzed the performance of models using mobile phone data only, Fitbit data only, and a combination of both (MobiFit) in detecting acute marijuana intoxication.
Results: The eXtreme Gradient Boosting Machine classifier showed that the MobiFit model, which combines mobile phone and wearable device data, achieved 99% accuracy (area under the curve=0.99; F1-score=0.85) in detecting acute marijuana intoxication in natural environments. The F1-score indicated significant improvements in sensitivity and specificity for the combined MobiFit model compared to using mobile or Fitbit data alone. Explainable artificial intelligence revealed that moderate to intense self-reported marijuana intoxication was associated with specific smartphone and Fitbit metrics, including elevated minimum heart rate, reduced macromovement, and increased noise energy around participants.
Conclusions: This study demonstrates the potential of using smartphone sensors and wearable devices for interpretable, transparent, and unobtrusive monitoring of acute marijuana intoxication in daily life. Advanced algorithmic decision-making provides valuable insight into behavioral, physiological, and environmental factors that could support timely interventions to reduce marijuana-related harm. Future real-world applications of these algorithms should be evaluated in collaboration with clinical experts to enhance their practicality and effectiveness.
Background: The global obesity epidemic demands innovative approaches to understand its complex environmental and social determinants. Spatial technologies, such as geographic information systems, remote sensing, and spatial machine learning, offer new insights into this health issue. This study uses deep learning and spatial modeling to predict obesity rates for census tracts in Missouri.
Objective: This study aims to develop a scalable method for predicting obesity prevalence using deep convolutional neural networks applied to satellite imagery and geospatial analysis, focusing on 1052 census tracts in Missouri.
Methods: Our analysis followed 3 steps. First, Sentinel-2 satellite images were processed using the Residual Network-50 model to extract environmental features from 63,592 image chips (224×224 pixels). Second, these features were merged with obesity rate data from the Centers for Disease Control and Prevention for Missouri census tracts. Third, a spatial lag model was used to predict obesity rates and analyze the association between deep neural visual features and obesity prevalence. Spatial autocorrelation was used to identify clusters of obesity rates.
Results: Substantial spatial clustering of obesity rates was found across Missouri, with a Moran I value of 0.68, indicating similar obesity rates among neighboring census tracts. The spatial lag model demonstrated strong predictive performance, with an R2 of 0.93 and a spatial pseudo R2 of 0.92, explaining 93% of the variation in obesity rates. Local indicators from a spatial association analysis revealed regions with distinct high and low clusters of obesity, which were visualized through choropleth maps.
Conclusions: This study highlights the effectiveness of integrating deep convolutional neural networks and spatial modeling to predict obesity prevalence based on environmental features from satellite imagery. The model's high accuracy and ability to capture spatial patterns offer valuable insights for public health interventions. Future work should expand the geographical scope and include socioeconomic data to further refine the model for broader applications in obesity research.
Artificial intelligence (AI) has become commonplace in solving routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. AI has been shown to improve efficiency in medical image generation, processing, and interpretation, and various such AI models have been developed across research laboratories worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. The goal of this paper is to give an overview of the intersection of AI and medical imaging landscapes. We also want to inform the readers about the importance of using standards in their radiology workflow and the challenges associated with deploying AI models in the clinical workflow. The main focus of this paper is to examine the existing condition of radiology workflow and identify the challenges hindering the implementation of AI in hospital settings. This report reflects extensive weekly discussions and practical problem-solving expertise accumulated over multiple years by industry experts, imaging informatics professionals, research scientists, and clinicians. To gain a deeper understanding of the requirements for deploying AI models, we introduce a taxonomy of AI use cases, supplemented by real-world instances of AI model integration within hospitals. We will also explain how the need for AI integration in radiology can be addressed using the Medical Open Network for AI (MONAI). MONAI is an open-source consortium for providing reproducible deep learning solutions and integration tools for radiology practice in hospitals.
Background: In medical education, particularly in anatomy and dermatology, generative artificial intelligence (AI) can be used to create customized illustrations. However, the underrepresentation of darker skin tones in medical textbooks and elsewhere, which serve as training data for AI, poses a significant challenge in ensuring diverse and inclusive educational materials.
Objective: This study aims to evaluate the extent of skin tone diversity in AI-generated medical images and to test whether the representation of skin tones can be improved by modifying AI prompts to better reflect the demographic makeup of the US population.
Methods: In total, 2 standard AI models (Dall-E [OpenAI] and Midjourney [Midjourney Inc]) each generated 100 images of people with psoriasis. In addition, a custom model was developed that incorporated a prompt injection aimed at "forcing" the AI (Dall-E 3) to reflect the skin tone distribution of the US population according to the 2012 American National Election Survey. This custom model generated another set of 100 images. The skin tones in these images were assessed by 3 researchers using the New Immigrant Survey skin tone scale, with the median value representing each image. A chi-square goodness of fit analysis compared the skin tone distributions from each set of images to that of the US population.
Results: The standard AI models (Dalle-3 and Midjourney) demonstrated a significant difference between the expected skin tones of the US population and the observed tones in the generated images (P<.001). Both standard AI models overrepresented lighter skin. Conversely, the custom model with the modified prompt yielded a distribution of skin tones that closely matched the expected demographic representation, showing no significant difference (P=.04).
Conclusions: This study reveals a notable bias in AI-generated medical images, predominantly underrepresenting darker skin tones. This bias can be effectively addressed by modifying AI prompts to incorporate real-life demographic distributions. The findings emphasize the need for conscious efforts in AI development to ensure diverse and representative outputs, particularly in educational and medical contexts. Users of generative AI tools should be aware that these biases exist, and that similar tendencies may also exist in other types of generative AI (eg, large language models) and in other characteristics (eg, sex, gender, culture, and ethnicity). Injecting demographic data into AI prompts may effectively counteract these biases, ensuring a more accurate representation of the general population.