Ming Che , Hanwei Chen , Yuta Ueda , Kazutoshi Kato
{"title":"Secured THz communication in photonic microcell networks based on spatial wave mixing of steered beams","authors":"Ming Che , Hanwei Chen , Yuta Ueda , Kazutoshi Kato","doi":"10.1016/j.osn.2024.100773","DOIUrl":null,"url":null,"abstract":"<div><p>Future 6G communication systems are envisioned to expand their carrier frequency to the THz region, where a broad unexplored region of spectrum is available. With this expansion, THz wireless communication has the potential to achieve ultra-high data transmission rates of up to 100<!--> <!-->Gbit/s. However, as large amounts of data are transmitted in an open wireless environment, there are significant concerns regarding communication security due to the susceptibility to eavesdropping, interception, and jamming. In this work, we proposed a secure approach for THz wireless communication based on spatial wave mixing and flexible beam steering. To achieve this, two frequency-modulated THz waves, which are generated by photonic THz sources and carry encrypted information with true randomness, are mixed at a THz envelope detector with an exclusive-OR logic operation. We analyzed the possible spatial location for the THz detector to ensure a secure microcell network deployment. Our results demonstrate that the size of the decryptable region is directly dependent on the directivity and width of the emitted THz beam. To address this, we have developed an array antenna with integrated uni-traveling-carrier photodiodes (UTC-PDs), which is capable of generating THz waves while also improving the flexibility of beam pointing, allowing for greater control over the location and size of the decodable region. By controlling fiber-optic delay lines, we successfully demonstrated that the directional gain of a 200<!--> <!-->GHz wave is increased by 8<!--> <!-->dB through a 1 × 3 UTC-PD-integrated planar bowtie antenna (PBA) array, together with continuous beam steering from -20° to 10°. Additionally, using a 1 × 4 UTC-PD-integrated PBA array to emulate two encryption transmitters and a Femi-level managed barrier diode to detect spatially mixed THz waves, we successfully achieved a feasibility experiment for real-time 200<!--> <!-->Mbit/s location-based decryption in the 200<!--> <!-->GHz band. These results indicate that the proposed scheme is feasible for secured THz communication, and would be a powerful candidate to mitigate security risks in 6G microcell networks.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427724000031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Future 6G communication systems are envisioned to expand their carrier frequency to the THz region, where a broad unexplored region of spectrum is available. With this expansion, THz wireless communication has the potential to achieve ultra-high data transmission rates of up to 100 Gbit/s. However, as large amounts of data are transmitted in an open wireless environment, there are significant concerns regarding communication security due to the susceptibility to eavesdropping, interception, and jamming. In this work, we proposed a secure approach for THz wireless communication based on spatial wave mixing and flexible beam steering. To achieve this, two frequency-modulated THz waves, which are generated by photonic THz sources and carry encrypted information with true randomness, are mixed at a THz envelope detector with an exclusive-OR logic operation. We analyzed the possible spatial location for the THz detector to ensure a secure microcell network deployment. Our results demonstrate that the size of the decryptable region is directly dependent on the directivity and width of the emitted THz beam. To address this, we have developed an array antenna with integrated uni-traveling-carrier photodiodes (UTC-PDs), which is capable of generating THz waves while also improving the flexibility of beam pointing, allowing for greater control over the location and size of the decodable region. By controlling fiber-optic delay lines, we successfully demonstrated that the directional gain of a 200 GHz wave is increased by 8 dB through a 1 × 3 UTC-PD-integrated planar bowtie antenna (PBA) array, together with continuous beam steering from -20° to 10°. Additionally, using a 1 × 4 UTC-PD-integrated PBA array to emulate two encryption transmitters and a Femi-level managed barrier diode to detect spatially mixed THz waves, we successfully achieved a feasibility experiment for real-time 200 Mbit/s location-based decryption in the 200 GHz band. These results indicate that the proposed scheme is feasible for secured THz communication, and would be a powerful candidate to mitigate security risks in 6G microcell networks.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks