{"title":"Development of whole cell biocatalytic system for asymmetric synthesis of esomeprazole with enhancing coenzyme biosynthesis pathway","authors":"Xinqi Xu, Yaping Meng, Bingmei Su, Juan Lin","doi":"10.1016/j.enzmictec.2024.110469","DOIUrl":null,"url":null,"abstract":"<div><p>Esomeprazole is the most popular proton pump inhibitor for treating gastroesophageal reflux disease. Previously, a phenylacetone monooxygenase mutant LnPAMOmu15 (LM15) was obtained by protein engineering for asymmetric synthesis of esomeprazole using pyrmetazole as substrate. To scale up the whole cell asymmetric synthesis of esomeprazole and reduce the cost, in this work, an <em>Escherichia coli</em> whole-cell catalyst harboring LM15 and formate dehydrogenase from <em>Burkholderia stabilis</em> 15516 (<em>Bst</em>FDH) were constructed through optimized gene assembly patterns. CRISPR/Cas9 mediated insertion of P<sub>trc</sub> promoter in genome was done to enhance the expression of key genes to increase the cellular NADP supply in the whole cell catalyst, by which the amount of externally added NADP<sup>+</sup> for the asymmetric synthesis of esomeprazole decreased to 0.05 mM from 0.3 mM for reducing the cost. After the optimization of reaction conditions in the reactor, the scalable synthesis of esomeprazole was performed using the efficient LM15-<em>Bst</em>FDH whole-cell as catalyst, which showed the highest reported space-time yield of 3.28 g/L/h with 50 mM of pyrmetazole loading. Isolation procedure was conducted to obtain esomeprazole sodium of 99.55 % purity and > 99.9 % <em>ee</em> with 90.1 % isolation yield. This work provides the basis for production of enantio-pure esomeprazole <em>via</em> cost-effective whole cell biocatalysis.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000760","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Esomeprazole is the most popular proton pump inhibitor for treating gastroesophageal reflux disease. Previously, a phenylacetone monooxygenase mutant LnPAMOmu15 (LM15) was obtained by protein engineering for asymmetric synthesis of esomeprazole using pyrmetazole as substrate. To scale up the whole cell asymmetric synthesis of esomeprazole and reduce the cost, in this work, an Escherichia coli whole-cell catalyst harboring LM15 and formate dehydrogenase from Burkholderia stabilis 15516 (BstFDH) were constructed through optimized gene assembly patterns. CRISPR/Cas9 mediated insertion of Ptrc promoter in genome was done to enhance the expression of key genes to increase the cellular NADP supply in the whole cell catalyst, by which the amount of externally added NADP+ for the asymmetric synthesis of esomeprazole decreased to 0.05 mM from 0.3 mM for reducing the cost. After the optimization of reaction conditions in the reactor, the scalable synthesis of esomeprazole was performed using the efficient LM15-BstFDH whole-cell as catalyst, which showed the highest reported space-time yield of 3.28 g/L/h with 50 mM of pyrmetazole loading. Isolation procedure was conducted to obtain esomeprazole sodium of 99.55 % purity and > 99.9 % ee with 90.1 % isolation yield. This work provides the basis for production of enantio-pure esomeprazole via cost-effective whole cell biocatalysis.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.